Skip to main content

Markov fields, correlated percolation, and the Ising model

  • Conference Lectures
  • Conference paper
  • First Online:
The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1035))

Abstract

We give an elementary introduction to the subject of correlated percolation. We illustrate it by diagrams and qualitative data for the Ising model on the square torus of order 100, which serves as a simple model for a binary alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • J.E. Besag (1974) “Spatial interaction and the statistical analysis of lattice systems.” J.Roy.Stat.Soc. B 36, 192–236.

    MathSciNet  MATH  Google Scholar 

  • K. Binder (1976) “Monte Carlo investigations of phase transitions and critical phenomena.” Phase transitions and critical phenomena 5 A, 1–105 (ed. C. Domb and M.S. Green) Academic Press.

    MathSciNet  Google Scholar 

  • A. Coniglio and L. Russo (1979) “Cluster size and shape in random and correlated percolation.” J.Phys., A 12, 545–550.

    ADS  Google Scholar 

  • F. Delyon (1980) “Taille, forme et nombre des amas dans les problèmes de percolation.” Thèse, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • A.G. Dunn, J.W. Essam and J.M. Lovelock (1975) “Scaling theory for the pair-connectedness in percolation models.” J.Phys. C 8, 743–750.

    ADS  Google Scholar 

  • A.G. Dunn, J.W. Essam and D.S. Ritchie (1975) “Series expansion study of the pair connectedness in bond percolation models.” J.Phys. C 8 4219–4235.

    ADS  Google Scholar 

  • A.G. Dunn, J.W. Essam and D.S. Ritchie (1975) “Series expansion study of the pair connectedness in bond percolation models.” J.Phys. C 8, 4219–4235.

    ADS  Google Scholar 

  • R. Durrett (1981) “An introduction to infinite particle systems.” Stochastic Processes and Applic. 11, 109–150.

    Article  MathSciNet  MATH  Google Scholar 

  • J.R. Ehrman, L.D. Fosdick and D.C. Handscomb (1960) “Computation of order parameters in an Ising lattice by the Monte Carlo Method.” J.Math.Phys. 1 547–558.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.W. Essam (1972) “Percolation and cluster size.” Phase transitions and critical phenomena 2, 197–270 (ed. C.Domb and M.S. Green) Academic Press.

    Google Scholar 

  • M.E. Fisher (1961) “Critical probabilities for cluster size and percolation problems.” J.Math.Phys. 2, 620–627.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Flammang (1977) “Percolation cluster sizes and perimeters in three dimensions.” Z.Phys. B 28, 47–50.

    ADS  Google Scholar 

  • C.M. Fortuin and P.W. Kasteleyn (1972) “On the random cluster model. I. Introduction and relation to other models.” Physica 57, 536–564.

    Article  ADS  MathSciNet  Google Scholar 

  • C.M. Fortuin (1972) “On the random cluster model. II. The percolation model.” Physica 58 393–418.

    Article  ADS  MathSciNet  Google Scholar 

  • C.M. Fortuin (1972) “On the random cluster model. III. The simple random cluster model.” Physica 59, 545–570.

    Article  ADS  MathSciNet  Google Scholar 

  • L.D. Fosdick (1959) “Calculation of order parameters in a binary alloy by the Monte Carlo method.” Phys.Rev. 116, 565–573.

    Article  ADS  MathSciNet  Google Scholar 

  • J.W. Halley (1983) “Polychromatic percolation.” Percolation structure and processes (ed. G. Deutscher, R. Zallen and J. Adler) Ann.Israel Phys.Soc. 5, 323–352. Adam Hilger, Bristol.

    Google Scholar 

  • J.M. Hammersley (1957) “Percolation processes. II. The connective constant.” Proc.Camb.Phil.Soc. 53, 642–645.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.M.Hammersley and D.C. Handscomb (1964) Monte Carlo methods. Methuen.

    Google Scholar 

  • J.M.Hammersley (1975) “Rumination on infinite Markov systems.” Perspectives in probability and statistics, 195–200.

    Google Scholar 

  • H. Kesten (1982) Percolation theory for mathematicians. Birkhäuser, Boston.

    Book  MATH  Google Scholar 

  • R.Kindermann and J.L.Snell (1982) Markov random fields and their applications. Contemporary Mathematics, 1. (Amer.Math.Soc.).

    Google Scholar 

  • H. Kunz and B. Souillard (1978) “Essential singularity and asymptotic behaviour of cluster size distribution.” J.Stat.Phys. 19, 77–106.

    Article  ADS  MathSciNet  Google Scholar 

  • D.P. Landau (1977) “Critical behaviour of a bcc Ising antiferromagnet in a magnetic field”. Phys.Rev. B 16, 4164–4170.

    Article  ADS  Google Scholar 

  • P.L. Leath (1976) “Cluster shape and critical exponents near percolation threshold.” Phys.Rev.Lett. 36, 921–924.

    Article  ADS  Google Scholar 

  • P.L. Leath (1976) “Cluster size and boundary distribution near percolation threshold.” Phys.Rev. B 14, 5046–5055.

    Article  ADS  Google Scholar 

  • P.L. Leath and G.R. Reich (1978) “Ramification of large clusters near the percolation threshold.” J.Phys. C 11, 1155–1168.

    ADS  Google Scholar 

  • N. Metropolis, A.W. Rosenbluth, N.M. Rosenbluth, A.H. Teller and T.E. Teller (1953) “Equations of state calculations by fast computing machine.” J.Chem.Phys. 21, 1087–1092.

    Article  ADS  Google Scholar 

  • J. Moussouris (1974) “Gibbs and Markov random systems with constraints.” J.Stat.Phys. 10, 11–33.

    Article  ADS  MathSciNet  Google Scholar 

  • E. Müller-Hartmann and J. Zittartz (1977) “Interface free energy and transition temperature of the square lattice Ising antiferromagnet at finite magnetic field.” Z.Phys. B 27, 261–266.

    ADS  Google Scholar 

  • G.F. Newell and E.W. Montroll (1953) “Theory of the Ising model of ferromagnetism.” Rev.Mod.Phys. 25, 353–389.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C.M. Newman and L.S. Schulman (1981) “Infinite clusters in percolation models.” J.Stat.Phys. 26, 613–628.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • L. Onsager (1944) “Crystal statistics I. A two-dimensional model with an order-disorder transition.” Phys.Rev. 65, 117–149.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • L. Onsager (1949) “The spontaneous magnetization of the Ising model.” Suppl.Nuovo Cimento 6, 241–243.

    Article  MathSciNet  Google Scholar 

  • D.C. Rapaport (1978) “Monte Carlo study of the phase boundary of the Ising antiferromagnet.” Phys.Lett. 65 A, 147–148.

    Article  ADS  Google Scholar 

  • V.K.S. Shante and S. Kirkpatrick (1971) “An introduction to percolation theory.” Adv.Phys. 20, 325–357.

    Article  ADS  Google Scholar 

  • I. Sneddon (1979) “Ising antiferromagnets in a magnetic field.” J.Phys. C 12, 3051–3057.

    ADS  MathSciNet  Google Scholar 

  • D. Stauffer (1977) “Exact distribution of cluster size.” Z.Phys. B 25, 391–399.

    ADS  Google Scholar 

  • D. Stauffer (1978) “Scaling assumption for lattice animals in percolation theory.” J.Stat.Phys. 18, 125–136.

    Article  ADS  Google Scholar 

  • E. Stoll and C. Domb (1979) “Shape and size of two-dimensional percolation clusters with and without correlations.” J.Phys. A 12 1843–1855.

    ADS  Google Scholar 

  • M.F. Sykes and J.W. Essam (1964) “Critical percolation probabilities by series methods.” Phys.Rev. A 133, 310–315.

    Article  ADS  Google Scholar 

  • E.T.Whittaker and G.N.Watson (1940) A course of modern analysis. (4th ed.), Cambridge University Press.

    Google Scholar 

  • A.P. Young and R.B. Stinchcombe (1975) “A renormalization group theory for percolation problems.” J.Phys. C 8, L535–L540

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. D. Hughes B. W. Ninham

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Hammersley, J.M., Mazzarino, G. (1983). Markov fields, correlated percolation, and the Ising model. In: Hughes, B.D., Ninham, B.W. (eds) The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation. Lecture Notes in Mathematics, vol 1035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0073261

Download citation

  • DOI: https://doi.org/10.1007/BFb0073261

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12707-9

  • Online ISBN: 978-3-540-38693-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics