Skip to main content

Sensitivity analysis in some engineering applications

More specifically in civil and mechanical engineering applications

  • Conference paper
  • First Online:
Sensitivity of Functionals with Applications to Engineering Sciences

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1086))

  • 373 Accesses

Abstract

In this very concise presentation we outline some historical developments of optimization theories as applied to continuum mechanics and to mechanical and civil engineering designs and trace the development of various modern sensitivity techniques during the period of preceding twenty years. We outline some of the difficulties and the progress made in overcoming them. We also stress some of the recently developed theoretical methods such as the "speed" method, and group theoretic techniques, indicating their importance to the computer-aided technology. Finally, we briefly outline some possible future directions.

We briefly discuss possible future connections between the design optimization theory and control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leonhardi Euleri Opera Omnia, Vol. X, ser. secundae, society for Natural Sciences of Switzerland, 1960, in particular the section of C. Truesdell's historical notes, p. 1638–1788, on the rational mechanics of flexible or elastic bodies.

    Google Scholar 

  2. J.L. Lagrange Sur la figure des colonnes, Miscellanea Taurinensia, Vol. V, 1970, (see p. 123–125).

    Google Scholar 

  3. J.B. Keller, The shape of the strongest column, Archives of Rational Mechanics and Analysis, Vol. 5 (1960), p. 275–285.

    Article  MathSciNet  Google Scholar 

  4. I. Tadjbakhsh and J.B. Keller, Strongest columns and isoperimetric inequalities for eigenvalues, J. of Applied Mechanics, Vol. 9, (1962), p. 159–164.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Olhoff, Optimal design against structural vibration and instability, Ph.D. Thesis, Technical University of Denmark, Dept. of Solid Mechanics, Lyngby, Denmark, November 1978.

    Google Scholar 

  6. E.J. Haug, U.S. Army Material Command Pamphlet, AMC 706–902 (1972–73), Engineering Design Handbook.

    Google Scholar 

  7. B.M.E. DeSilva, Applications of Pontryagin's principle to a minimum weight design problem, Journal of Basic Engineering, ASME, Vol. 1, #92, (1970), p. 245–250.

    Article  Google Scholar 

  8. J.L.P. Armand, Applications of Optimal Control Theory of Systems with Distributed Parameters to Problems of Structural Optimization (in Russian) Mir, Moscow, 1977.

    Google Scholar 

  9. Vadim Komkov and N. Coleman, Optimality of design and sensitivity analysis of beam theory, Int. J. Control, Vol. 18, #4 (1973), p. 731–740.

    Article  MATH  Google Scholar 

  10. Vadim Komkov, Simultaneous Control and Optimization for Elastic Systems, Proceedings of International Conference on Applications of Distributed System Theory to the Control of Large Space Structures, J.P.L. Pasadena, California, July 1982, N.A.S.A., 1983.

    Google Scholar 

  11. J.B. Keller and F.I. Niordson, The tallest column, J. of Math. and Mechanics, Vol. 16, (1966), p. 433–466.

    MathSciNet  MATH  Google Scholar 

  12. E. Masur, Singular problems of optimal design, in Optimization of Distributed Parameter Structures NATO Symposium, Iowa City, IA, E.J. Haug and J. Cea Editors, Noordhoff and Sijthoff Publishers, Holland (1980), p. 200–218.

    Google Scholar 

  13. K.K. Choi and E.J. Haug, Optimization of Structures with Repeated Eigenvalues, Ibid, p. 219–277.

    Google Scholar 

  14. N. Olhoff and J. Taylor, Designing Constinuous Columns for Minimal Cost of Material and of Interior Supports, J. of Structural Mechanics, Vol. 6, (1978), p. 367–382.

    Article  Google Scholar 

  15. Z. Mróz and G.I.N. Rozvany, Optimal Design of Structures with Variable Support Conditions, J. Optimization Theory and Applications, Vol. 15, #1, (1975), p. 85–101.

    Article  MathSciNet  MATH  Google Scholar 

  16. E.F. Masur and Z. Mróz, Singular Solutions in Structural Optimization Problems, Proceedings IUTAM Sumposium. Springer Verlag, Berlin, 1975.

    Google Scholar 

  17. Emmy Noether, Invariante Variationsprobleme, Kgl. Gess. Nachrichte Göttingen, Math. Ph. K., 1918.

    Google Scholar 

  18. D.J. Logan, Invariant Variational Principles, Academic Press, New York, 1977.

    Google Scholar 

  19. Andrzej Trautman, Noether's equations and convservation laws, Commun. Math. Physics, 6, (1967), p. 248–261.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.M. Arthurs, Complementary variational principles, Oxford Press, Oxford, 1968.

    MATH  Google Scholar 

  21. V. Komkov, Applications of Rall's theorem to classical elastodynamics, J. Math. Anal. Appl., 14, (1966), p. 511–521.

    Article  MathSciNet  MATH  Google Scholar 

  22. I.H. Ibrahimov, Invariant variational problems and conservation laws (comments on the theorem of E. Noether), Theoret. Mat. Fiz. 1, #3, (1969), p. 350–359.

    Google Scholar 

  23. V. Komkov, An embedding technique in problems of elastic stability, Z.A.M.M., 60, (1980), p. 503–507.

    MathSciNet  MATH  Google Scholar 

  24. V. Komkov and C. Irwin, Proceedings A.M.S. meeting in New York, special session on sensitivity of functionals, April 1983.

    Google Scholar 

  25. V.G. Litvinov, Optimal Control Problem for the Fundamental Frequency of a Plate having a Variable Thickness, Vichesl. Mat. i Mat. Fiz. 19, #4 (1979), p. 866–877.

    MathSciNet  MATH  Google Scholar 

  26. V.A. Krys'ko, The Optimal Control Problems for the Fundamental Frequency of Inhomogeneous Shells, Prikl. Mekh. Vol. 18, #4, (1982), p. 41–47. (Translated by Plenum Publ., New York, as Soviet Applied Mechanics)

    MathSciNet  Google Scholar 

  27. A.P. Seyranian, Quasioptimal Solutions to Optimal Design Problems with Various Constraints, Soviet Applied Mechanics, Vol. 13, #6, (1977), p. 544–550.

    Article  Google Scholar 

  28. N.M. Gura and A.P. Seyranian, Optimum Circular Plate with Constraints on Rigidity and Fundamental Frequency of Vibration, M.T.T., Vol. 12, #1 (1977), p. 129–136.

    Google Scholar 

  29. A.P. Seyranian, Homogeneous Functions and Optimzation Problems, Int. J. Solids and Structures, Vol. 15 (1979), p. 749–759.

    Article  MATH  Google Scholar 

  30. N. Olhoff and S.H. Rasmussen, On Single and Biomodal Optimum Buckling Loads for Clamped Columns, International Journal of Solids and Structures, Vol. 13, (1977), p. 605–614.

    Article  MATH  Google Scholar 

  31. J.S. Arora and E.J. Haug, Optimum Structural Design Under Dynamic Loads, ASCE J. of Structural Division, Vol. 103, #ST.10, (1977), p. 2071–2074.

    Google Scholar 

  32. E.J. Haug and T.T. Feng, Optimization of Distributed Parameter Structures Under Dynamic Loads, Control and Dynamic Systems, Editor C.T. Leondes, Vol. 13, (1977), p. 207–246.

    Google Scholar 

  33. E.J. Haug, J.S. Arora, and T.T. Feng, Sensitivity Analysis and Optimization of Structures for Dynamical Response, ASME Journal of Mechanical Design, Vol. 100, (1978), p. 311–318.

    Article  Google Scholar 

  34. M.H. Hsiao, E.J. Haug, and J.S. Arora, A State Space Method for Optimal Design of Vibration Isolators, ASME Journal of Mechanical Design, Vol. 101, (1979), p. 309–314.

    Article  Google Scholar 

  35. E.J. Haug and J.S. Arora, Distributed Parameter Structural Optimization for Dynamic Response, in Optimization of Distributed Parameter Structures, editors E.J. Haug and J. Cea, Sijthoff and Nordhoff publishers, Netherlands 1980.

    Google Scholar 

  36. W. Velte and P. Villagio, Are the Optimum Problems of Structural Design Well Posed?, Archives of Rational Mechanics and Analysis, Vol.78, #3, (1982), p. 199–211.

    Article  MathSciNet  MATH  Google Scholar 

  37. V. Komkov, Application of Invariant Variational Principles to the Optimal Design of a Column, Z.A.M.M., Vol. 61, (1984), p. 75–80.

    MathSciNet  MATH  Google Scholar 

  38. L.V. Ovsiannikov, Group-theoretic analysis of differential equations, Nauka, Moscow, 1978.

    MATH  Google Scholar 

  39. N.H. Ibrahimov, Lie-Becklund groups and conservation laws, D.A.N. USSR, 270, #1, (1976), p. 539–542.

    Google Scholar 

  40. W. Prager and R.T. Shields, Optimal Design of Multipurpose Structures, Int. J. Solids & Structures, Vol. 4, (1968), p. 469–475.

    Article  Google Scholar 

  41. W. Prager and J. Taylor, Problems of Optimal Structural Designs, J. Applied Mech., Vol. 35, #1, (1968), p. 102–106.

    Article  MATH  Google Scholar 

  42. E.J. Haug and V. Komkov, Sensitivity Analysis in Distributed Parameter Mechanical Systems Optimization, JOTA, Vol. 23, #3, (1977), p. 445–464.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Taylor and C.Y. Liu, On the Optimal Design of Columns, AIAA Journal, Vol. 6, #8, (1968), p. 1497–1502.

    Article  MATH  Google Scholar 

  44. E.J. Haug, Two Methods of Optimal Structural Design Development in Mechanics, Proceedings of 11th Midwestern Mechanics Conference, Development in Mechanics, 52 (1970), p. 847–860.

    Google Scholar 

  45. N.V. Banichuk, Shape Optimization for Structural Systems, Nauka, Moscow, 1981, translated as: Problems and Methods of Optimal Structural Design, Plenum Press, New York, 1983.

    Google Scholar 

  46. P. Pederson, Sensitivity Analysis for Non-selfadjoint problems, Preprint, presented at New York meeting A.M.S., April 1983. American Mathematical Society, Notices, March 1983.

    Google Scholar 

  47. Pauli Pederson, Sensitivity Analysis for Non-Self Adjoint Problems, this issue.

    Google Scholar 

  48. Gilbert Strang, L1 and L Approximation of vector fields in the plane, in Non-linear PDE-s in Applied Science, U.S.A.-Japan Seminar, Tokoyo, Japan 1982. Published in Lecture Notes in Numerical and Applied Analysis, Volume 5, (1982), Springer Verlag, Berlin and New York, 1982, pages 273–288.

    Google Scholar 

  49. G. Strang and R. Kohn, optimal design of cylinders in shear, in the collection. The Mathematics of Finite Elements and Applications, Part IV, J. Whiteman editor, Academic Press, London and New York, 1982.

    Google Scholar 

  50. G. I. N. Rozvany, Optimal Design of Flexural Systems, Pergammon Press, Oxford, 1976.

    Google Scholar 

  51. W. Prager, Optimal design of statically determinate beams for a given deflection, Int. J. Mech. Science, Vol. 13.

    Google Scholar 

  52. E. Noether, Invariante Variations Probleme, Nachv. Akad. Wiss. Gotingen, Math-Phys. Kl. II, 1981, 235–257.

    Google Scholar 

  53. V. Komkov, A dual form of Noether's theorem with applications to continuum mechanics, J. Math. Anal. Appl., 75, #1, (1980), p. 251–269.

    Article  MathSciNet  MATH  Google Scholar 

  54. A. Trautman, Noether's equations and conservation laws, Comm. Math. Phys. 6, (1967), p. 248–261.

    Article  MathSciNet  MATH  Google Scholar 

  55. V. Komkov, The optimization of the domain problem I. Basic concepts, J. Math. Anal. Appl., Vol. 82, #2, (1981), p. 317–333.

    Article  MathSciNet  MATH  Google Scholar 

  56. Banichuk, N.V., "Optimization of Elastic Bars in Torsion," Int. J. Solids and Structures, Vol. 12, 1976, pp. 275–286.

    Article  MathSciNet  MATH  Google Scholar 

  57. Zolesio, J.P., "The Material Derivative (Or Speed) Method For Shape Optimization", Optimization of Distributed Parameter Structures (Eds. E.J. Haug and J. Cea), Sijthoff & Noordhoff Alphen aan den Rijn, Netherlands, 1980.

    Google Scholar 

  58. Haug, E.J. and Rousselet, B., "Design Sensitivity Analysis of Shape Variations," Optimization of Distributed Parameter Structures, (Eds. E.J. Haug and J. Cea), Sijthoff and Noordhoff, Alphen aan den Rign, Netherlands, 1980.

    Google Scholar 

  59. Zolesio, J.P. Identification de domaines par deformations, Thesis, Nice University, 1979.

    Google Scholar 

  60. F.L. Chernous'ko, "Technique of Local Perturbations for Numerical Solution of Variational Problems," Zh. Vychisl. Mat. Fiz., Vol. 5, No. 4, pp. 749–754.

    Google Scholar 

  61. F.L. Chernous'ko, "Certain Problems of Optimal Control With a Small Parameter," Prilk. Mat. Mekh., Vol. 32, No. 1, 1968, pp. 15–26.

    MathSciNet  MATH  Google Scholar 

  62. F.L. Chernous'ko, "Certain Optimal Shapes of Bifurcating Beams," Izv. Akad. Nauk SSSR, MTT, No. 3, 1979.

    Google Scholar 

  63. F.L. Chernous'ko and A.A. Melikjan, Game-Theoretic Problems of Control and Search, Nauka, Moscow, 1978.

    Google Scholar 

  64. E.J. Haug, "A Review of Distributed Parameter Structural Optimization Literature," Optimization of Distributed Parameter Structures(E.J. Haug and J. Cea,Ed.), Sijthoff & Noordhoff, Alphen aan den Rijn, Netherlands, 1981, pp. 3–68.

    Chapter  Google Scholar 

  65. J.E. Taylor and Martin P. Bendsøe, An Interpretation For Min-Max Structural Design Problems Including a Method For Relaxing Constraints, Int. J. Solids Structures, Vol. 20, No. 4, pp. 301–314, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  66. N. Olhoff and J.E. Taylor, On Optimal Structural Remodeling, J. Opt. Theory Applic. 27, 571–582 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Cea, Lectures on Optimization-Theory and Algorithms, Springer-Verlag, 1978.

    Google Scholar 

  68. J. Hadamard, "Mémoire sur le Probleme d'Analyse Relatif à l'Équilibre des Plaques Elastiques Encastrées (1908)", oeuvres de J. Hadamard, C.N.R.S., Paris, 1968.

    Google Scholar 

  69. E. Bessel-Hagen, Über die Enhaltungssatze der Elektrodynamik, Math. Ann. 84 (1921), 258–276.

    Article  MathSciNet  MATH  Google Scholar 

  70. S. Drobot and A. Rybarski, A variational principle in hydrodynamics, Arch. Rational Mech. Anal. 2, No. 5 (1958), 393–410.

    Article  MathSciNet  MATH  Google Scholar 

  71. J.K. Knowles and E. Sternberg, On a class of conservation laws in linearized, and finite elasticity, Arch. Rational Mech. Anal. 44 (1972), 187.

    Article  MathSciNet  MATH  Google Scholar 

  72. B. Vujanovič, Int. J. Non-linear Mech. 13,(1978), 185–197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vadim Komkov

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Komkov, V. (1984). Sensitivity analysis in some engineering applications. In: Komkov, V. (eds) Sensitivity of Functionals with Applications to Engineering Sciences. Lecture Notes in Mathematics, vol 1086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0073067

Download citation

  • DOI: https://doi.org/10.1007/BFb0073067

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13871-6

  • Online ISBN: 978-3-540-39061-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics