Skip to main content

Deffect correction and higher order schemes for the multi grid solution of the steady Euler equations

  • Conference paper
  • First Online:
Multigrid Methods II

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1228))

Abstract

In this paper we describe 1st and 2nd order finite volume schemes for the solution of the steady Euler equations for inviscid flow. The solution for the first order scheme can be efficiently computed by a FAS multigrid procedure. Second order accurate approximations are obtained by linear interpolation in the flux- or the state space. The corresponding discrete system is solved (up to truncation error) by defect correction iteration. An initial estimate for the 2nd order solution is computed by Richardson extrapolation. Examples of computed approximations are given, with emphasis on the effect for the different possible discontinuities in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W.K., Thomas, J.L., and Van Leer, B., “A comparison of finite volume flux vector splittings for the Euler equations” AIAA Paper No. 85-0122.

    Google Scholar 

  2. Böhmer, K., Hemker, P. & Stetter, H., “The Defect Correction Approach.” Computing Suppl. 5 (1984) 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandt, A., “Guide to Multigrid Development.” In: Multigrid Methods (W. Hackbusch and U. Trottenberg eds), Lecture Notes in Mathematics 960, pp.220–312, Springer Verlag 1982.

    Google Scholar 

  4. Colella, P. and Woodward, P.R., “The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations” J. Comp. Phys 52 (1984) 174–201.

    Article  MathSciNet  MATH  Google Scholar 

  5. Davis, S.F., “A rotationally biased upwind difference scheme for the Euler equations.” J. Comp. Phys. 57 (1984) 65–92.

    Article  MATH  Google Scholar 

  6. Hackbusch, W., “Bemerkungen zur iterierten Defektkorrektur und zu ihrer Kombination mit Mehrgitterverfahren.” Rev. Roum. Math. Pures Appl. 26 (1981) 1319–1329.

    MathSciNet  MATH  Google Scholar 

  7. Harten, A., Lax, P.D. & Van Leer, B., “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws.” SIAM Review 25 (1983) 35–61.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hemker, P.W., “Mixed defect correction iteration for the solution of a singular perturbation problem.” Comp. Suppl. 5 (1984) 123–145.

    Article  MathSciNet  MATH  Google Scholar 

  9. Hemker, P.W. & Spekreijse, S.P., “Multigrid solution of the Steady Euler Equations.” In: Advances in Multi-Grid Method (D. Braess, W. Hackbusch and U. Trottenberg eds) Proceedings Oberwolfach Meeting, Dec. 1984, Notes on Numerical Fluid Dynamics, Vol. 11, Vieweg, Braunschweig, 1985.

    Google Scholar 

  10. Hemker, P.W. & Spekreijse, S.P., “Multiple Grid and Osher's Scheme for the Efficient Solution of the the Steady Euler Equations.” (Report NM-8507, CWI, Amsterdam, 1985.) To appear in Applied Numerical Mathematics.

    Google Scholar 

  11. Jameson, A., “Numerical Solution of the Euler Equations for Compressible Inviscid Fluids.” In: Procs 6th International Conference on Computational Methods in Applied Science and Engineering, Versailles, France, Dec. 1983.

    Google Scholar 

  12. Jespersen, D.C. “Design and implementation of a multigrid code for the steady Euler equations.” Appl. Math. and Computat. 13 (1983) 357–374.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jespersen, D.C. “Recent developments in multigrid methods for the steady Euler equations.” Lecture Notes, March 12–16, 1984, von Karman Inst., Rhode-St.Genese, Belgium.

    Google Scholar 

  14. G.M. Johnson, “Multiple grid convergence acceleration of viscous and inviscid flow computations.” Appl. Math. and Computat. 13 (1983) 375–398.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lax, P.D., “Hyperbolic systems of conservation laws and the mathematical theory of shock waves.” Regional conference series in applied mathematics 11. SIAM Publication, 1973

    Google Scholar 

  16. Lax, P.D., “Shock waves and entropy” In: Contributions to Nonlinear Functional Analysis (E.H. Zarantonello ed.) Acad. Press, New York, 1971.

    Google Scholar 

  17. Mulder, W.A. “Multigrid Relaxation for the Euler equations.” To appear in: J. Comp. Phys. 1985.

    Google Scholar 

  18. Ni Ron-Ho, “A multiple grid scheme for solving the Euler equations.” AIAA Journal 20 (1982) 1565–1571.

    Article  MATH  Google Scholar 

  19. Osher, S. “Numerical solution of singular perturbation problems and hyperbolic systems of conservation laws”, In: Analytical and Numerical Approaches to Asymptotic problems in Analysis, O. Axelsson, L.S. Frank and A. van der Sluis eds.), North Holland Publ. Comp., 1981.

    Google Scholar 

  20. Osher, S. & Chakravarthy, S., “High resolution schemes and the entropy condition.” SIAM J. Numer. Anal. 21 (1984) 955–984.

    Article  MathSciNet  MATH  Google Scholar 

  21. Osher, S & Solomon, F., “Upwind difference schemes for hyperbolic systems of conservation laws.” Math. Comp. 38 (1982) 339–374.

    Article  MathSciNet  MATH  Google Scholar 

  22. Schmidt, W. and Jameson, A., “Euler solvers as an analysis tool for aircraft aerodynamics.” In: Advances in Computational Transonics (W.G. Habashi (ed.)) Pineridge Press, Swansea.

    Google Scholar 

  23. Spekreijse, S. “Second order accurate upwind solutions of the 2D steady state Euler equations by the use of a defect correction method.” CWI-report, in preparation, 1985.

    Google Scholar 

  24. Steger, J.L., “A preliminary study of relaxation methods for the inviscid conservative gasdynamics equations using flux splitting.” Nasa Contractor Report 3415 (1981).

    Google Scholar 

  25. Steger, J.L. & Warming, R.F., “Flux vector splitting of the inviscid gasdynamics equations with applications to finite difference methods.” J. Comp. Phys. 40 (1981) 263–293.

    Article  MathSciNet  MATH  Google Scholar 

  26. Sweby, P.K. “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM J.Numer.Anal. 21 (1984) 995–1011.

    Article  MathSciNet  MATH  Google Scholar 

  27. Van Leer, B., “Flux-vector splitting for the Euler equations.” In: Procs. 8th Intern. Conf. on numerical methods in fluid dynamics, Aachen, June, 1982. Lecture Notes in Physics 170, Springer Verlag.

    Google Scholar 

  28. Van Leer, B., “Upwind difference methods for aerodynamic problems governed by the Euler equations” Report 84-23, Dept. Math. & Inf., Delft Univ. Techn., 1984.

    Google Scholar 

  29. Van Leer, B. and Mulder, W.A., “Relaxation methods for hyperbolic conservation laws.” In: Dynamics of Gas in a rotating Galaxy (W.A. Mulder, thesis, Leiden Univ., 1985).

    Google Scholar 

  30. de Zeeuw, P.M. and van Asselt, E.J., “The convergence rate of multi-level algorithms applied to the convection diffusion equation.” SIAM J.S.S.C. 6 (1985) 492–503.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Hackbusch Ulrich Trottenberg

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Hemker, P.W. (1986). Deffect correction and higher order schemes for the multi grid solution of the steady Euler equations. In: Hackbusch, W., Trottenberg, U. (eds) Multigrid Methods II. Lecture Notes in Mathematics, vol 1228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0072646

Download citation

  • DOI: https://doi.org/10.1007/BFb0072646

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17198-0

  • Online ISBN: 978-3-540-47372-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics