Skip to main content

The weil conjectures in finite geometry

  • Invited Papers
  • Conference paper
  • First Online:
Combinatorial Mathematics X

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1036))

Abstract

In the first section the Weil conjectures for non-singular primals are stated and several examples are given. Particularities for curves are described in section two. The remaining sections are devoted to elliptic cubic curves. In particular, the number of points that a cubic can have is precisely given, as well as the number of inequivalent curves with a fixed number of points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Davenport, The Higher Arithmetic. 4th edition (Hutchinson, 1970).

    Google Scholar 

  2. R. De Groote and J.W.P. Hirschfeld, The number of points on an elliptic cubic curve over a finite field, Europ. J. Combin. 1 (1980), 327–333.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Deligne, La conjecture de Weil, I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307.

    Article  MathSciNet  MATH  Google Scholar 

  4. B.M. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math. 82 (1960), 631–648.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Hasse, Abstrakte Begründung der komplexen Multiplikation und Riemannsche Vermutung in Funktionkörpern, Abh. Math. Sem. Univ. Hamburg 10 (1934), 325–348.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.W.P. Hirschfeld, Classical configurations over finite fields: I. The double-six and the cubic surface with 27 lines, Rend. Mat. e Appl. 26 (1967), 115–152.

    MathSciNet  MATH  Google Scholar 

  7. J.W.P. Hirschfeld, Projective Geometries over Finite Fields. (Oxford University Press, 1979).

    Google Scholar 

  8. N.M. Katz, An overview of Deligne's proof of the Riemann hypothesis for varieties over finite fields, Proc. Sympos. Pure Math. 28 (1976), 275–306.

    Article  MATH  Google Scholar 

  9. N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta Functions. (Springer, 1977).

    Google Scholar 

  10. B. Mazur, Eigenvalues of Frobenius acting on algebraic varieties over finite fields, Proc. Sympos. Pure Math. 29 (1975), 231–261.

    Article  MathSciNet  MATH  Google Scholar 

  11. W.M. Schmidt, Equations over Finite Fields, an Elementary Approach. (Lecture Notes in Mathematics 536, Springer, 1976).

    Google Scholar 

  12. R.J. Schoof, Unpublished manuscript.

    Google Scholar 

  13. J.T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Ughi, On the number of points of elliptic curves over a finite field and a problem of B. Segre, Europ. J. Combin., to appear.

    Google Scholar 

  15. W.C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. 2 (1969), 521–560.

    MathSciNet  MATH  Google Scholar 

  16. A Weil, Sur les Courbes Algébriques et les Variétés qui s'en Déduisent. (Hermann, 1948).

    Google Scholar 

  17. A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Louis Reynolds Antoine Casse

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Hirschfeld, J.W.P. (1983). The weil conjectures in finite geometry. In: Casse, L.R.A. (eds) Combinatorial Mathematics X. Lecture Notes in Mathematics, vol 1036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0071506

Download citation

  • DOI: https://doi.org/10.1007/BFb0071506

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12708-6

  • Online ISBN: 978-3-540-38694-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics