Skip to main content

The mountain pass theorem: Theme and variations

  • Conference paper
  • First Online:
Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 957))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castro, A., Methodos de Reduccion via Minimax, this volume.

    Google Scholar 

  2. Nirenberg, L., Variational and topological methods in nonlinear problems, Bull. A.M.S., 4, (1981), 267–302.

    Article  MathSciNet  MATH  Google Scholar 

  3. Palais, R. S., Critical point theory and the minimax principle, Proc. Sym. Pure Math, 15, Amer. Math. Soc. Providence, R.I. (1970), 185–212.

    Google Scholar 

  4. Rabinowitz, P. H., Variational methods for nonlinear eigenvalue problems, in Eigenvalues of Nonlinear Problems, G. Prodi (ed.), C.I.M.E. Edizioni Cremonese, Rome, (1975), 141–195.

    Google Scholar 

  5. Ambrosetti, A. and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Anal., 14, (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  6. Rabinowitz, P. H., Some minimax theorems and applications to nonlinear partial differential equations, Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe, edited by L. Cesari, R. Kannan, and H. F. Weinberger, Academic Press, (1978), 161–177.

    Google Scholar 

  7. Benci, V. and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Inv. Math. 52, (1979), 241–273.

    Article  MathSciNet  MATH  Google Scholar 

  8. Lazer, A. C., E. M. Landesman, and D. Meyers, On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl. 52, (1975), 594–614.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ahmad, S., A. C. Lazer, and J. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Ind. Univ. Math. J. 25, (1976) 933–944.

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, A. and A. C. Lazer, Applications of a maximum principle, Rev. Colombiana Mat., 10, (1976), 141–149.

    MathSciNet  MATH  Google Scholar 

  11. Amann, H. Saddle points and multiple solutions of differential equations, Math. Z., 196, (1979), 127–166.

    Article  MathSciNet  MATH  Google Scholar 

  12. Amann, H. and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, to appear.

    Google Scholar 

  13. Coron, J. M., Resolution de l’équation Au+Bu=f ou A est linéare autoadjoint et B dédeirt d’un potential convexe, to appear Ann. Fac. Sc. Toulouse.

    Google Scholar 

  14. Hofer, H., On strongly indefinite functionals with applications, to appear Trans. A. M. S..

    Google Scholar 

  15. Ljusternik, L. A. and L. G. Schnirelman, Topological Methods in the Calculus of Variations, Hermann, Paris, 1934.

    Google Scholar 

  16. Krasnoselski, M. A., Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964.

    Google Scholar 

  17. Berger, M. S., Nonlinearity and Functional Analysis, Academic Press, New York, 1978.

    Google Scholar 

  18. Browder, F. E., Nonlinear eigenvalue problems and group invariance, in Functional Analysis and Related Fields, F. E. Browder (ed.), Springer, 1970, 1–58.

    Google Scholar 

  19. Amann, H., Ljusternik-Schnirelmann theory and nonlinear eigenvalue problems, Math. Ann. 199, (1972) 55–72.

    Article  MathSciNet  MATH  Google Scholar 

  20. Clark, D. C., A variant of the Lusternik-Schnirelmann theory, Indiana Univ. Math. J., 22, (1972), 65–74.

    Article  MathSciNet  MATH  Google Scholar 

  21. Böhme, R., Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertproblem, Math. Z., 127, (1972), 105–126.

    Article  MathSciNet  MATH  Google Scholar 

  22. Marino, A.: La biforcazione nel caso variazionale, Conf. Sem. Math. dell’Univ Bari, 132 (1977).

    Google Scholar 

  23. Rabinowitz, P. H., A bifurcation theorem for potential operators, J. Funct. Anal., 25, 1977, 412–424.

    Article  MathSciNet  MATH  Google Scholar 

  24. Fadell, E. R. and P. H. Rabinowitz, Bifurcation for odd potential operators and an alternative topological index. J. Funct. Anal., 26, 1977, 48–67.

    Article  MathSciNet  MATH  Google Scholar 

  25. Crandall, M. G. and P. H. Rabinowitz, Continuation and variational methods for the existence of positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mec. Anal., 58, (1975), 207–218.

    Article  MathSciNet  MATH  Google Scholar 

  26. Fadell, E. R. and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45, (1978), 139–174.

    Article  MathSciNet  MATH  Google Scholar 

  27. Benci, V., A geometrical index for the group S1 and some applications to the research of periodic solutions of O.D.E.’s, to appear Comm. Pure Appl. Math.

    Google Scholar 

  28. Fadell, E. R., S. Y. Husseini, and P. H. Rabinowitz, Borsuk-Ulam theorems for arbitrary S1 actions and applications, to appear Trans. Amer. Math. Soc.

    Google Scholar 

  29. Schwartz, J., Nonlinear Functional Analysis, lecture notes Courant Inst. of Math. Sc., New York Univ., 1965.

    Google Scholar 

  30. Conner, P. E. and E. E. Floyd, Fixed point free involutions and equivariant maps, Bull. A. M. S., 66, 1960, 416–441.

    Article  MathSciNet  MATH  Google Scholar 

  31. Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, Ser. 3, 13, (1959), 115–162.

    MathSciNet  MATH  Google Scholar 

  32. Courant, R. and D. Hilbert, Methods of Mathematical Physics, VI, Interscience, New York, 1953.

    MATH  Google Scholar 

  33. Struwe, M., Infinitely many critical points for functional which are not even and applications to superlinear boundary value problems, Manus. Math. 32, (1980), 335–364.

    Article  MathSciNet  MATH  Google Scholar 

  34. Bahri, A. and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc.

    Google Scholar 

  35. Dong, G.-C. and S. Li, On the existence of infinitely many solutions of the Dirichlet problem for some nonlinear elliptic equations, Univ. of Wisconsin Math. Res. Center Tech. Rep. #2161, Dec. 1980.

    Google Scholar 

  36. Rabinowitz, P. H., Multiple critical points of perturbed symmetric functionals, to appear Trans. Amer. Math. Soc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Djairo Guedes de Figueiredo Chaim Samuel Hönig

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Rabinowitz, P.H. (1982). The mountain pass theorem: Theme and variations. In: Guedes de Figueiredo, D., Hönig, C.S. (eds) Differential Equations. Lecture Notes in Mathematics, vol 957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0066242

Download citation

  • DOI: https://doi.org/10.1007/BFb0066242

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11951-7

  • Online ISBN: 978-3-540-39539-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics