Skip to main content

Space-time versus phase space approach to relativistic particle dynamics

  • Non-Linear Systems
  • Conference paper
  • First Online:
Twistor Geometry and Non-Linear Systems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 970))

Abstract

Recent results on the relativistic mechanics of directly interacting point particles are reviewed. A reparametrization invariant formulation of the problem is given in terms of projective tangent spaces and second order differential systems. The relation between this general approach and the phase space constraint Hamiltonian picture (including the theorem about gauge dependence of world lines for canonical coordinates in relativistic classical mechanics) is discussed. An application of the canonical Hamiltonian framework to the general relativistic 2-body problem is also reviewed.

To the memory of Yu.M. Shirokov, a pioneer in relativistic Hamiltonian mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A. Nikolov, Second order differential systems and relativistic particle dynamics, Institute of Nuclear Research and Nuclear Energy preprint, Sofia (1981).

    Google Scholar 

  2. V.V. Molotkov, I.T. Todorov, Gauge dependence of world lines and invariance of the S matrix in relativistic classical mechanics, Commun. Math. Phys. 79, 111–132 (1981) (the details of the proof of Theorem 1 asserting the gauge dependence of interacting particles’ world lines are given in the Trieste Internal Report IC/79/59).

    Article  ADS  MathSciNet  Google Scholar 

  3. I.T. Todorov, Hamiltonian dynamics of directly interacting relativistic point particles, Proceedings of the XVII Winter School in Theoretical Physics, Karpacz (1980). I.T. Todorov, Constraint Hamiltonian approach to relativistic point particle dynamics, Lectures presented at the Scuola Internazionale Superiore di Studi Avanzati and the International Centre for Theoretical Physics, Miramare-Trieste (1980), Part I.

    Google Scholar 

  4. S.N. Sokolov, Relativistic addition of direct interactions in the point form of dynamics, Teor. Mat. Fiz. 36, 193–207 (1978); Theory of relativistic direct interactions, preprint IHEP-OTF 78–125, Serpukhov (1978); S.N. Sokolov, A.N. Shatny, Physical equivalence of the three forms of dynamics and addition of interactions in the front and instant forms, Teor. Mat. Fiz. 37, 291–304 (1978) (English transl.: Theor. Math. Phys. 37, 1029–1038 (1979)).

    Article  MathSciNet  Google Scholar 

  5. E.H. Kerner (editor) The Theory of Action at a Distance in Relativistic Particle Dynamics. A preprint collection (N.Y., 1972) (see, in particular, the work of Currie, Jordan, Sudarshan, Leutwyler, and Hill). For a later discussion see H. Leutwyler, Relativistic dynamics on a null plane, Ann. Phys. (N.Y.) 112, 94–164 (1978); F. Röhrlich, Relativistic Hamiltonian dynamics, Ann. Phys. (N.Y.) 117, 292–322 (1979).

    Google Scholar 

  6. R.A. Mann, The Classical Dynamics of Particles — Galilean and Lorentz Relativity (Academic Press, N.Y., 1974) (see, in particular, Chapter 5, as well as references therein).

    Google Scholar 

  7. R. Giachetti, E. Sorace, Nonexistence of two-body interacting Lagrangians invariant under independent reparametrizations of each world line, Lett. Nuovo Cimento 26, 1–4 (1979).

    Article  Google Scholar 

  8. H. Van Dam, Th. W. Ruijgrok, Classical relativistic equations for particles with spin moving in external fields, Instituut voor Theoretische Fysica, Utrecht preprint (1980).

    Google Scholar 

  9. P.A.M. Dirac, Quantum electrodynamics, Communications of the Dublin Institute for Advanced Studies, Ser.A No.1 (1943) pp.1–36; Developments in quantum electrodynamics, ibid. No.3 (1946) pp.1–33.

    Google Scholar 

  10. R. Penrose, Conformal treatment of infinity, in: Relativity, Groups and Topology, Eds. C.M. De Witt and B. De Witt, Les Houches Summer School, 1963 (Gordon and Breach, N.Y., 1964) pp. 565–584.

    Google Scholar 

  11. P.A.M. Dirac, Generalized Hamiltonian dynamics, Canad. J. Math. 2, 129–148 (1950) and Proc. Roy. Soc. A246, 326–332 (1958); Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva Univ., N.Y., 1964).

    Article  MathSciNet  MATH  Google Scholar 

  12. L.D. Faddeev, Feynman integrals for singular Lagrangians, Teor. Mat. Fiz. 1, 3–18 (1969).

    Article  MathSciNet  Google Scholar 

  13. A.J. Hanson, T. Regge, C. Teitelboim, Constraint Hamiltonian Systems (Academia Nazionale dei Lincei, Roma, 1976).

    Google Scholar 

  14. I.T. Todorov, Dynamics of relativistic point particles as a problem with constraints, Commun. JINR E2-10125, Dubna (1976).

    Google Scholar 

  15. H. Sazdjian, Separable interactions in classical relativistic Hamiltonian mechanics, Lett. Math. Phys. 5, 319–325 (1981); S. I. Bidikov, I.T. Todorov, Relativistic addition of interactions in constraint Hamiltonian mechanics, Lett. Math. Phys. 5, 461–467 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. L. Bel, Hamiltonian Poincaré invariant systems, Ann. Inst. H. Poincaré 18A, 57–75 (1973); L. Bel, J. Martin, Formes hamiltoniennes et systèmes conservatifs, Ann. Inst. H. Poincaré, 22A, 173–195 (1975).

    MathSciNet  Google Scholar 

  17. Ph. Droz-Vincent, Hamiltonian systems of relativistic particles, Rep. Math. Phys. 8, 79–101 (1975); Two-body relativistic systems, Ann. Inst. H. Poincaré 27, 407–424 (1977); N-body relativistic systems, Ann. Inst. H. Poincaré 32A, 377–389 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Pauri, G.M. Prosperi, Canonical realizations of the Poincaré group II. Space-time description of two particles interacting at a distance... , J. Math. Phys. 17, 1468–1495 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. H. Sazdjian, Position variables in classical relativistic Hamiltonian mechanics, Nucl. Phys. B161, 469–492 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  20. S.N. Sokolov, Classical analogues of the Moeller operators, of the Pearson example and of the Birmann-Kato invariance principle, Nuovo Cimento 52A, 1–22 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  21. I.T. Todorov, Quasipotential equation corresponding to the relativistic eikonal approximation, Phys. Rev. D3, 2351–2356 (1971); Quasipotential approach to the 2-body problem in quantum field theory, in: Properties of Fundamental Interactions, Vol. 9C, Ed. A. Zichichi (Editrice Compositori, Bologna 1973) pp. 951–979; V.A. Rizov, I.T. Todorov, B.L. Aneva, Quasipotential approach to the Coulomb bound state problem for spin 0 and spin 1/2 particles, Nucl. Phys. B98, 447–471 (1975); V.A. Rizov, I.T. Todorov, Quasipotential approach to the bound state problem in quantum electrodynamics, Elem. Chast. i Atom. Yad. 6, 669–742 (1975) (Engl. transl.: Sov. J. Part. Nucl. 6, 269–298 (1975)); this paper also contains bibliography.

    ADS  Google Scholar 

  22. H. Crater, P. Van Alstine, Relativistic quark potential for the vector mesons, preprint, Tennessee (1980).

    Google Scholar 

  23. A. Maheshwari, E.R. Nissimov, I.T. Todorov, Classical and quantum two-body problem in general relativity, preprint IC/80/124, Trieste (1980), Lett. Math. Phys. 5, 359–366 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Einstein, L. Infeld, B. Hoffmann, Gravitational equations and the problem of motion, Annals of Math. 39, 65–100 (1938); L. Infeld, J. Plebanski, Motion and Relativity (Pergamon Press, Oxford and PWN, Warszawa, 1960) (see, in particular, Sec.3 of Chapter V).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Heinz-Dietrich Doebner Tchavdar D. Palev

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Spring-Verlag

About this paper

Cite this paper

Nikolov, P.A., Todorov, I.T. (1982). Space-time versus phase space approach to relativistic particle dynamics. In: Doebner, HD., Palev, T.D. (eds) Twistor Geometry and Non-Linear Systems. Lecture Notes in Mathematics, vol 970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0066032

Download citation

  • DOI: https://doi.org/10.1007/BFb0066032

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11972-2

  • Online ISBN: 978-3-540-39418-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics