Skip to main content

Computation of solenoidal (divergence-free) vector fields

  • Conference paper
  • First Online:
Numerical Integration of Differential Equations and Large Linear Systems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 968))

Abstract

In many important scientific applications (e.g., incompressible fluids) the diivergence-free property is not preserved by the partial differential equations describing the flow. Accordingly projection of a vector field v onto its solenoidal (divergence-free) part plays a fundamental role and in some respects is one of the most difficult aspects in the numerical analysis of such problems.

We first survey and describe the schemes that have been devised to deal computationally with this difficulty. Relatively few have been implemented in three dimensions and even fewer for three-dimensional stationary flows.

We then present a new scheme for the direct computation of the projection of an arbitrary three-dimensional vector field v(x) onto its solenoidal (divergence-free) part. The algorithm combines finite differences before and after the calculation of a singular integral. We prove convergence for this algorithm and present illustrative numerical results for the cases tested. A number of applications are discussed.

Partially supported by a Computing resources Grant from the National Center of Atmospheric Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Morse and H. Feshbach, Methods of Theoretical Physics, Parts I and II, McGraw-Hill, New York, 1953.

    MATH  Google Scholar 

  2. O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1963.

    MATH  Google Scholar 

  3. D. Sattinger, Topics in Stability and Bifurcation Theory, Lec. Notes in Math. 309, Springer, Berlin, 1973.

    MATH  Google Scholar 

  4. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Elsevich-North Holland, New York, 1977.

    MATH  Google Scholar 

  5. P. Gresho, R. Lee, R. Sani, T. Stullich, On the time-dependend FEM solution of the incompressible Navier-Stokes Equations in two and three dimensions, Lawrence Livermore Lab. Rept. UCRL-81323 (1978).

    Google Scholar 

  6. A. Chorin, The numerical solution of the Navier-Stokes equation for an incompressible fluid, Bull. Amer. Math. Soc. 73 (1967), 928–931.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comp. Physics 2 (1967), 12–26.

    Article  MATH  Google Scholar 

  8. C. Peskin, Flow patterns around heart valves: a numerical method, J. Comp. Physics 10 (1972), 252–271.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Prodi, Theoremi di Tipo Locale per il Sistema di Navier-Stokes e Stabilita delle Soluzione Stazionarei, Rend. Sem. Mat. Univ. Padova 32 (1962), 374–397.

    MathSciNet  MATH  Google Scholar 

  10. D. Sattinger, The mathematical problem of hydrodynamical stability, J. Math. Mech. 19 (1970), 797–817.

    MathSciNet  MATH  Google Scholar 

  11. M. Fortin, Approximation des Fonctions à Divergence Nulle par la Méthode des Eléments Finis, Lec. Notes in Physics 18, Springer, Berlin (1973), 99–103.

    MATH  Google Scholar 

  12. M. Crouzeix and P. Raviart, Conforming and Nonconforming Finite Element Methods for Solving the Stationary Stokes Equations (to appear).

    Google Scholar 

  13. F. Thomasset, Application d'une Méthode d'éléments finis d'ordre un à la résolution numérique des équations de Navier-Stokes, IRIA Rept. No. 150, Le Chesnay, France, 1975.

    Google Scholar 

  14. U. Schumann, Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comp. Physics 18 (1975), 376–404.

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Ladyzhenskaya and V. Rivland, On the alternating direction method for the computation of a viscous incompressible fluid flow in cylindrical coordinates, Izv. Akad. Nank. 35 (1971), 259–268.

    Google Scholar 

  16. J. Lions, On the numerical approximation of some equations arising in hydrodynamics, A.M.S. Symposium, Durham, April, 1968.

    Google Scholar 

  17. R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. France 98 (1968), 115–152.

    MathSciNet  MATH  Google Scholar 

  18. R. Glowinski and O. Pironneau, "Numerical methods for the 2-dimensional Stokes Problem through the stream function-voticity formulation", 1st France-Japan Colloq. on Funct. Analysis and Num. Analysis, Tokyo, 1976.

    Google Scholar 

  19. H. Fujita and T. Kato, On the Navier-Stokes Initial Value Problem I, Tech. Rept. 121, Stanford University, 1963.

    Google Scholar 

  20. W. Ames, Some computation-steeples in fluid mechanics, SIAM Review 15 (1973), 524–552.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Amsden and F. Harlow, A simplified MAC technique for incompressible fluid flow calculations, J. Comp. Physics 6 (1970), 322–325.

    Article  MATH  Google Scholar 

  22. R. Sweet, A cyclic reduction algorithm for solving block tridiagonal systems of arbitrary dimension, SIAM J. Num. Anal. 14 (1977), 706–720.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Williams, Numerical integration of the three-dimensional Navier-Stokes equations for incompressible flow, J. Fluid. Mech. 37 (1969), 727–750.

    Article  MATH  Google Scholar 

  24. W. Ames, Numerical Methods for Partial Differential Equations, 2nd Ed., Academic Press, New York, 1977.

    MATH  Google Scholar 

  25. P. Eagles, On stability of Taylor vortices by fifth-order amplitude expansions, J. Fluid Mech. 49 (1971), 529–550.

    Article  MATH  Google Scholar 

  26. K. Gustafson, Estimation of eigenvalue aggregates determining hydrodynamic stability, Notices Amer. Math. Soc. 23 (1976), A-682.

    Google Scholar 

  27. J. Marsden and M. McCracken, The Hopf Bifurcation and its applications, Springer, Berlin, 1976.

    Book  MATH  Google Scholar 

  28. O. Ladyzhenskaya, Mathematical analysis of Navier-Stokes equations for incompressible liquids, in "Annual Review of Fluid Mechanics", Vol. 7, Annual Reviews Inc., Palo Alto, California, 1975.

    Google Scholar 

  29. D. Young, Nonlinear Diffusion with Traveling Waves and Numerical Solutions, Thesis, University of Colorado, 1979, to appear.

    Google Scholar 

  30. R. Richtmyer, Invariant manifolds and attractors in the Taylor Problem, preprint, 1978.

    Google Scholar 

  31. R. Beam and R. Warming, An implicit finite difference algorithm for hyperbolic systems in conservation-law form, J. Comp. Physics 22 (1976), 87–110.

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Johnson and L. Erickson, A general panel method for the analysis and design of arbitrary configurations in incompressible flows, NASA report, NASA CR-3079 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juergen Hinze

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Gustafson, K.E., Young, D.P. (1982). Computation of solenoidal (divergence-free) vector fields. In: Hinze, J. (eds) Numerical Integration of Differential Equations and Large Linear Systems. Lecture Notes in Mathematics, vol 968. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0064884

Download citation

  • DOI: https://doi.org/10.1007/BFb0064884

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11970-8

  • Online ISBN: 978-3-540-39374-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics