Skip to main content

Generalized block designs as approximations for optimal coverings

  • Conference paper
  • First Online:
Combinatorial Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 969))

  • 400 Accesses

Abstract

Let V be a set of cardinality v, v ∈ ‖N. We are looking for the minimal number of k-sets (i.e. subsets of V having cardinality k), such that every t-set of V, t≦k, is covered by at least λ of these k-sets. This special covering problem is called the generalized block design problem with parameters v,k,t,λ. It is equivalent to the problem of Turán [16] and also to the generalized covering problem [4]. Therefore, the known bounds for these two equivalent problems are also bounds for the generalized block design problem and vice versa.

Using some type of greedy algorithm, we will compute an approximative solution for an optimal generalized design with arbitrary parameters. The number of blocks in such an approximation will be at most (1+log( kt ))-times the optimal number of blocks. This result depends essentially on a theorem of Lovász [11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.W. Brown P. Erdös V. Sós Some extremal problems on r-graphs, in: Harary, F., New directions in the theory of graphs. Acad.Press, New York, 1973, 53–63.

    Google Scholar 

  2. N.Gaffke Optimale Versuchsplanung für lineare Zwei-Faktor-Modelle. Dissertation, RWTH Aachen, 1978.

    Google Scholar 

  3. M.R. Garey D.S. Johnson Computers and intractability. W.H.Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  4. K.-U.Gutschke Untersuchungen zu einer Klasse kombinatorischer Extremal-probleme. Dissertation, RWTH-Aachen, 1974.

    Google Scholar 

  5. M. Hall Combinatorial Theory. Blaisdell, Waltram-Toronto-London, 1967.

    MATH  Google Scholar 

  6. H. Hanani The existence and construction of BIBD's. Ann.Math.Statist., 32, 1961, 361–386.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Korte L. Lovász Mathematical structures underlying greedy algorithms, in: Fundamentals of Computation Theory, Lect.Notes in Comp. Sci. 117, 1981, 205–209.

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Krafft Lineare statistische Modelle. Vandenhoek & Ruprecht, Göttingen, 1978.

    MATH  Google Scholar 

  9. E. Lawler Combinatorial Optimization: Networks and Motroids. Holt-Reinehart-Winston, New York, 1976.

    Google Scholar 

  10. C. Lindner A.Rosa (eds.) Topics on Steiner Systems. Ann. of Discrete Math., 7, 1980.

    Google Scholar 

  11. L. Lovász On the ratio of optimal integral and fractional covers. Discrete Math. 13, 1975, 383–390.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Oberschelp Lotto Garantiesysteme und Blockpläne. Math.-Phys.-Semesterberichte 19, 1972, 55–67.

    MathSciNet  MATH  Google Scholar 

  13. W. Oberschelp D. Wille Mathematischer Einführungskurs für Informatiker. Diskrete Strukturen, Teubner, Stuttgart, 1976.

    Book  MATH  Google Scholar 

  14. J.Remlinger Verallgemeinerte Blockpläne als Approximation optimaler Überdeckungslösungen, Diplomarbeit, RWTH-Aachen, 1980.

    Google Scholar 

  15. J. Schönheim On coverings, Pacific J.Math. 14, 1405–1411, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Turán On the theory of graphs, Colloq.Math. 3, 19–30, 1954.

    MATH  Google Scholar 

  17. R.M. Wilson An existence theory for pairwise balanced designs III: Proof of the existence conjectures, Journ.Comb.Theory (A) 18, 1975, 71–79.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Witt Über Steinersche Systeme, Abh.Math.Sem.Univ.Hamburg 12,1938 265–275.

    Article  MathSciNet  MATH  Google Scholar 

  19. H.-J.Zimmermann Einführung in die Grundlagen des Operations Research, München, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dieter Jungnickel Klaus Vedder

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Remlinger, J. (1982). Generalized block designs as approximations for optimal coverings. In: Jungnickel, D., Vedder, K. (eds) Combinatorial Theory. Lecture Notes in Mathematics, vol 969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0063001

Download citation

  • DOI: https://doi.org/10.1007/BFb0063001

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11971-5

  • Online ISBN: 978-3-540-39380-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics