Skip to main content

Description of spherically invariant random processes by means of g-functions

  • Conference paper
  • First Online:
Combinatorial Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 969))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lord, R. D.: The Use of the Hankel Transform in Statistics. Biometrika 41 (1954), pp. 44–55.

    MathSciNet  MATH  Google Scholar 

  2. Kingman, J.F.C.: Random Walks with Spherical Symmetry. Acta Math. (Stockholm) 109 (1963), pp. 11–53.

    Article  MathSciNet  MATH  Google Scholar 

  3. Vershik, A.M.: Some Characteristic Properties of Gaussian Stochastic Processes. Theory of Probability and its Applications, IX (1964), pp. 353–356.

    Article  MATH  Google Scholar 

  4. Blake, I.F. and Thomas, J.B: On a Class of Processes Arising in Linear Estimation Theory. IEEE Trans. Information Theory, IT-14 (1968), pp. 12–16

    Article  MATH  Google Scholar 

  5. McGraw, D.K. and Wagner, J.F: Elliptically Symmetric Distributions. IEEE Trans. Information Theory, IT 14 (1968), pp. 110–120.

    Article  Google Scholar 

  6. Picinbono, B: Spherically Invariant and Compound Gaussian Processes. IEEE Trans. Information Theory, IT-16 (1970), pp. 77–79.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kingman, J.F.C.: On Random Sequences with Spherical Symmetry. Biometrika 59 (1972), pp. 492–494.

    Article  MathSciNet  MATH  Google Scholar 

  8. Yao, K.: A Representation Theorem and its Applications to Spherically-Invariant Random Processes. IEEE Trans. Information Theory, IT-19 (1973), pp. 600–607.

    MathSciNet  MATH  Google Scholar 

  9. Bochner, S.: Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse. Math. Annalen 108 (1933), pp. 399–408.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bochner, S.: Completely Monotone Functions of the Laplace Operator for Torus and Sphere. Duke Math. J. 3 (1937), pp. 488–502.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bochner, S.: Stable Laws of Probability and Completely Monotone Functions. Duke Math. J. 3 (1937), pp. 726–728.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bochner, S.: Lectures on Fourier Integrals. Princeton University Press (1959)

    Google Scholar 

  13. Schoenberg, I.J.: On Certain Metric Spaces Arising from Euclidian Spaces by a Change of Metric and their Imbedding in Hilbert Space. Annals of Mathematics 38 (1937), pp. 787–793.

    Article  MathSciNet  MATH  Google Scholar 

  14. Schoenberg, I.J.: Metric Spaces and Completely Monotone Functions. Annals of Mathematics 39 (1938), pp. 811–841.

    Article  MathSciNet  MATH  Google Scholar 

  15. Schoenberg, I.J.: Metric Spaces and Positive Definite Functions. Trans. Am. Math. Soc. 44 (1938), pp. 522–536.

    Article  MathSciNet  MATH  Google Scholar 

  16. Widder, D.V.: Necessary and Sufficient Conditions for the Representation of a Function as a Laplace Integral. Trans. Am. Math. Soc. 33 (1931), pp. 851–892.

    Article  MathSciNet  MATH  Google Scholar 

  17. Picinbono, B. and Vezzosi, G.: Détection d'un Signal Certain dans un Bruit non Stationnaire et non Gaussien. Ann. Télécommunic. 25 (1970) pp. 433–439.

    MATH  Google Scholar 

  18. Vezzosi, G. and Picinbono, B.: Détection d'un Signal Certain dans un Bruit Sphériquement Invariant, Structure et Characteristiques des Récepteurs. Ann. Télécommunic. 27 (1972), pp. 95–110.

    Google Scholar 

  19. Goldmann, J.: Statistical Properties of a Sum of Sinusoids and Gaussian Noise and its Generalization to Higher Dimensions. Bell Sys. Tech. J. 53 (1974), pp. 557–580.

    Article  MathSciNet  Google Scholar 

  20. Goldmann, J.: Detection in the Presence of Spherically Symmetric Random Vectors. IEEE Trans. Information Theory, IT-22 (1976), pp. 52–59.

    Article  MathSciNet  Google Scholar 

  21. Leung, H.M. and Cambanis, S.: On the Rate Distortion Functions of Spherically Invariant Vectors and Sequences. IEEE Trans. Information Theory, IT-24 (1978), pp. 367–373.

    Article  MathSciNet  MATH  Google Scholar 

  22. Brehm, H.: Sphärisch Invariante Stochastische Prozesse. Habilitationsschrift, Fachbereich Physik, Universität Frankfurt am Main (1978).

    Google Scholar 

  23. Wolf, D. and Brehm, H.: Experimental Studies on one-and two-dimensional Amplitude Probability Densities of Speech Signals. Proc. 1973 Int. Symp. on Inf. Theory, Ashkelon (Israel), IEEE-Cat. 73 CH 0753-4 IT, B4-6.

    Google Scholar 

  24. Brehm, H. and Wolf D.: Nth-Order Joint Probability Densities of Non-Gaussian Stochastic Processes. Proc. 1976 Int. Symp. on Inf. Theory, Ronneby (Schweden), IEEE-Cat. 76, CH 1095-9 IT, pp. 121–122.

    Google Scholar 

  25. Wolf, D. and Brehm H.: Mathematical Treatment of Speech Signals. Proc. 1977 Int. Symp. on Inf. Theory, Ithaca (USA), IEEE-Cat. 77, CH 1277-3 IT, E3, p. 105.

    Google Scholar 

  26. Wolf, D.: Analytische Beschreibung von Sprachsignalen. AEÜ 31 (1977), pp. 392–398.

    Google Scholar 

  27. Meijer, C.S.: Nieuw. Arch. Wisk. 18 (1936), pp. 10–39, Meijer, C.S.: Nederl. Akad. Wetensch. Proc. Ser. A 49 (1946), pp. 227–237, 344–356, 457–469, 632–641, 765–772, 936–943, 1063–1072 and 1165–1175.

    MathSciNet  Google Scholar 

  28. Erdelyi, A. (ed.): Higher Transcendental Functions. Vol. I, II, III. McGraw-Hill Book Company, New York, Toronto, London, 1953.

    MATH  Google Scholar 

  29. Luke, Y.: The Special Functions and their Approximations. Vol. I, II. Academic Press New York, San Francisco, London, 1969.

    MATH  Google Scholar 

  30. Luke, Y.: Mathematical Functions and their Approximations. Academic Press, New York, San Francisco, London 1975.

    MATH  Google Scholar 

  31. Papoulis, A.: Signal Analysis. McGraw-Hill Book Company, New York, etc., 1977.

    MATH  Google Scholar 

  32. Oberhettinger, F. and Badii, L.: Tables of Laplace Transforms. Springer-Verlag, Berlin, Heidelberg, New York, 1973.

    Book  MATH  Google Scholar 

  33. Abramowitz, M. and Stegun I. (ed.): Handbook of Mathematical Functions. Dover Publications, New York, 1965.

    Google Scholar 

  34. Oberhettinger, F.: Tables of Bessel Transforms. Springer-Verlag, Berlin, Heidelberg, New York, 1972.

    Book  MATH  Google Scholar 

  35. Abut, H., Gray, R.M. and Rebolledo, G.: Vector Quantization of Speech and Speech-Like Waveforms. IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, (1982), pp. 423–435.

    Article  MATH  Google Scholar 

  36. Berger, T.: Rate Distortion Theory. Prentice Hall, Englewood Cliffs, New Jersey, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dieter Jungnickel Klaus Vedder

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Brehm, H. (1982). Description of spherically invariant random processes by means of g-functions. In: Jungnickel, D., Vedder, K. (eds) Combinatorial Theory. Lecture Notes in Mathematics, vol 969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062986

Download citation

  • DOI: https://doi.org/10.1007/BFb0062986

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11971-5

  • Online ISBN: 978-3-540-39380-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics