Skip to main content

Singular perturbations of epidemic models involving a threshold

  • Part 3 Research Papers
  • Conference paper
  • First Online:
Asymptotic Analysis II —

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 985))

Abstract

This paper deals with the mathematical model of an epidemic with a small number of initial infectives I0. The time development of the epidemic, satisfying an integro-differential equation, is approximated with singular perturbation techniques. The asymptotic result for I0 → 0 shows that when the number of infectives exceeds a fixed small value (independent of I0) the time course of the epidemic is fixated; the time needed to pass this value is of the order 0(-log I0).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Capasso & G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci 42 (1978), 43–61.

    Article  MathSciNet  MATH  Google Scholar 

  2. K.L. Cooke, Functional-differential equations: Some models and perturbation problems, in Differential Equations and Dynamical Systems, J.K. Hale and J.P. LaSalle, eds., Acad. Press, New York (1967), p. 167–1830.

    Google Scholar 

  3. O. Diekmann, Limiting behaviour in an epidemic model, J. Nonlinear Analysis-Theory, Methods and Applications, 1 (1977). 459–470.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.G. Frauenthal, Mathematical Modelling in Epidemiology, Springer-Verlag, Berlin 1980.

    Book  MATH  Google Scholar 

  5. J. Grasman & B.J. Matkowsky, Evolution of an epidemic with a small number of initial infectives, Report TW 162, Math. Centre Amsterdam (1976).

    Google Scholar 

  6. H.W. Hethcote & D.W. Tudor, Integral equation models for epidemic infectious diseases, J. Math. Biology 9 (1980), 37–47.

    Article  MathSciNet  MATH  Google Scholar 

  7. H.W. Hethcote, H.W. Stech & P. van den Driessche, Nonlinear oscillations in epidemic models, SIAM J. Appl. Math. 40 (1981), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. de Hoog, J. Gani & D.J. Gates, A threshold theorem for the general epidemic in discrete time, J. Math. Biology 8 (1979), 113–121.

    Article  MathSciNet  MATH  Google Scholar 

  9. F.C. Hoppensteadt, An age dependent epidemic model, J. Franklin Inst. 297 (1974), p. 325–332.

    Article  MATH  Google Scholar 

  10. F.C. Hoppensteadt, Mathematical theories of populations: demographics genetics and epidemics, SIAM Regional Conference Series in Appl. Math. 20 (1975).

    Google Scholar 

  11. J.T. Kemper, A few observations on S-I-R epidemics, in Differential Equations and Applications in Ecology, Epidemics, and Population Problems, S.N. Busenberg & K.L. Cooke (eds), Acad. Press, New York, 1981.

    Google Scholar 

  12. W.O. Kermack & A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. A115 (1927), p. 700–721.

    Article  MATH  Google Scholar 

  13. J.A.J. Metz, The epidemic in a closed population with all susceptibles equally valuable; some results for some susceptible populations and small initial infections, Acta Biotheoretica 27 (1978), p. 75–123.

    Article  Google Scholar 

  14. R.K. Miller, Nonlinear Volterra Integral equations, Benjamin Inc. Menlo Park, California (1971).

    MATH  Google Scholar 

  15. J. Reddingius, Notes on the mathematical theory of epidemics, Acta Biotheoretica 20 (1971), p. 125–157.

    Article  Google Scholar 

  16. E.C. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press, Oxford (1937).

    MATH  Google Scholar 

  17. L.O. Wilson, An epidemic model involving a threshold, Math. Biosci. 15 (1972) p. 109–121.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Verhulst

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Grasman, J., Matkowsky, B.J. (1983). Singular perturbations of epidemic models involving a threshold. In: Verhulst, F. (eds) Asymptotic Analysis II —. Lecture Notes in Mathematics, vol 985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062378

Download citation

  • DOI: https://doi.org/10.1007/BFb0062378

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12286-9

  • Online ISBN: 978-3-540-39612-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics