Skip to main content

Le groupe K3(Z[∈]) n’a pas de p-torsion pour p ≠ 2 et 3

  • Part I
  • Conference paper
  • First Online:
Algebraic K-Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 966))

  • 650 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. W. G. DWYER, Twisted homological stability for general linear groups, Ann. of Math. 111 (1980), 239–251.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. EVENS et E. M. FRIEDLANDER, On K*(Z/p2) and related homology groups, à paraître aux Trans. A.M.S.

    Google Scholar 

  3. W. van der KALLEN, Le K2 des nombres duaux, C.R.Ac.Sc. Paris 273 (1971), 1204–1207.

    MATH  Google Scholar 

  4. Chr. KASSEL, Un calcul d’homologie du groupe linéaire général, C.R.Ac.Sc. Paris 288 (1979), 481–483.

    MathSciNet  MATH  Google Scholar 

  5. Chr. KASSEL, Homologie du groupe linéaire général et K-théorie stable, C.R.Ac.Sc. Paris 290 (1980), 1041–1044.

    MathSciNet  MATH  Google Scholar 

  6. Chr. KASSEL, K-théorie relative d’un idéal bilatère de carré nul, Proc. Conf. Alg. K-theory, Evanston 1980, Springer Lect. Notes in Math.

    Google Scholar 

  7. R. LEE et R. H. SZCZARBA, The group K3(Z) is cyclic of order 48, Ann. of Math. 104 (1976), 31–60.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. LEE et R. H. SZCZARBA, On the homology and cohomology of congruence subgroups, Inv. Math. 33 (1976), 15–53.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. P. SNAITH, On K3 of dual numbers, préprint.

    Google Scholar 

  10. C. SOULE, Rational K-theory of the dual numbers of a ring of algebraic integers, Proc. Conf. Alg. K-theory, Evanston 1980, Springer Lect. Notes.

    Google Scholar 

  11. F. WALDHAUSEN, Algebraic K-theory of topological spaces I, A.M.S. Proc. Symp. Pure Math. 32 (1978), 35–60.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. H. C. WHITEHEAD, A certain exact sequence, Ann. of Math. 52 (1950),51.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Keith Dennis

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Kassel, C. (1982). Le groupe K3(Z[∈]) n’a pas de p-torsion pour p ≠ 2 et 3. In: Dennis, R.K. (eds) Algebraic K-Theory. Lecture Notes in Mathematics, vol 966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062171

Download citation

  • DOI: https://doi.org/10.1007/BFb0062171

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11965-4

  • Online ISBN: 978-3-540-39553-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics