Skip to main content

Fast multiprecision evaluation of series of rational numbers

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1423))

Included in the following conference series:

Abstract

We describe two techniques for fast multiple-precision evaluation of linearly convergent series, including power series and Ramanujan series. The computation time for N bits is O((log N)2 M(N)), where M(N) is the time needed to multiply two N-bit numbers. Applications include fast algorithms for elementary functions, π, hypergeometric functions at rational points, ζ(3), Euler's, Catalan's and Apéry's constant. The algorithms are suitable for parallel computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Theodor Amdeberhan and Doron Zeilberger: Acceleration of hypergeometric series via the WZ method. Electronic Journal of Combinatorics, Wilf Festschrift Volume (to appear)

    Google Scholar 

  2. Jonathan M. Borwein and Peter B. Borwein: Pi and the AGM, Wiley (1987)

    Google Scholar 

  3. Richard P. Brent: The complexity of multiple-precision arithmetic. Complexity of Computational Problem Solving, (1976)

    Google Scholar 

  4. Richard P. Brent: Fast multiple-precision evaluation of elementary functions. Journal of the ACM 23 (1976), 242–251

    Article  MATH  MathSciNet  Google Scholar 

  5. Richard P. Brent, Alf van der Poorten and Hermann te Riele: A comparative study of algorithms for computing continued fractions of algebraic numbers. In H. Cohen (editor), Algorithmic Number Theory: Second International Symposium, ANTS-II (1996), Springer Verlag, 37–49.

    Google Scholar 

  6. Richard P. Brent, and Edwin M. McMillan: Some new algorithms for high-precision computation of Euler's constant. Mathematics of Computation 34 (1980), 305–312

    Article  MATH  MathSciNet  Google Scholar 

  7. Henri Cohen, C. Batut, D. Bernardi, and M. Olivier: GP/PARI calculator — version 1.39.03. Available via anonymous FTP from ftp://megrez.math.u-bordeaux.fr (1995).

    Google Scholar 

  8. Bruno Haible: CLN, a class library for numbers. Available via anonymous FTP from ftp://ftp.santafe.edu/pub/gnu/cln.tar.gz (1996)

    Google Scholar 

  9. LiDIA Group: LiDIA 1.3 — a library for computational number theory. Available from ftp://ftp.informatik.tu-darmstadt.de/pub/TI/systems/LiDIA or via WWW from http://www.informatik.tu-darmstadt.de/TI/LiDIA, Technische UniversitÄt Darmstadt (1997)

    Google Scholar 

  10. Thomas Papanikolaou, Ingrid Biehl, and Johannes Buchmann: LiDIA: a library for computational number theory. SFB 124 report, UniversitÄt des Saarlandes (1995)

    Google Scholar 

  11. Thomas Papanikolaou: Entwurf und Entwicklung einer objektorientierten Bibliothek für algorithmische Zahlentheorie. PhD thesis, UniversitÄt des Saarlandes (1997).

    Google Scholar 

  12. Thomas Papanikolaou: Homepage, http://www.math.u-bordeaux.fr/~papanik

    Google Scholar 

  13. Simon Plouffe: ISC: Inverse Symbolic Calculator. Tables of records of computation, http://www.cecm.sfu.ca/projects/ISC/records2.html

    Google Scholar 

  14. Eugene Salamin: Computation of π using arithmetic-geometric mean. Mathematics of Computation 30 (1976), 565–570.

    Article  MATH  MathSciNet  Google Scholar 

  15. Schönhage, A., and Strassen, V.: Schnelle Multiplikation gro\er Zahlen. Computing 7 (1971), 281–292.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joe P. Buhler

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haible, B., Papanikolaou, T. (1998). Fast multiprecision evaluation of series of rational numbers. In: Buhler, J.P. (eds) Algorithmic Number Theory. ANTS 1998. Lecture Notes in Computer Science, vol 1423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054873

Download citation

  • DOI: https://doi.org/10.1007/BFb0054873

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64657-0

  • Online ISBN: 978-3-540-69113-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics