Skip to main content

Generalized functional theory of interacting coupled Liouvillean Quantum Fields of condensed matter

  • Chapter
  • First Online:
Density Functional Theory II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 181))

Abstract

A large class of time-dependent quantum problems involves strongly interacting coupled fields requiring self-consistent non-perturbative and non-adiabatic approaches. We present here a general framework for analyzing these, based on Liouvillean Quantum Field Dynamics. Thus a multifunctional extension of the time-dependent density functional approach to many-body problems is set up. We also generalize the time-dependent non-equilibrium Green function method of Schwinger and Keldysh including all the relevant fields. We thus enlarge the context of the φ-derivable, effective action functional theory of Baym for transport phenomena involving all relevant fields consistent with the conservation laws. This formalism is essential in understanding very-short time quantum dynamics of coupled fields of electrons, ions, and electromagnetic fields, as in nanoelectronic and optoelectronic devices, quantum dots in intense laser beams, micro-cavity quantum electrodynamics, as well as strongly coupled electron-phonon (high TC), electron-photon (laser-atom systems), and molecular dynamic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Hohenberg P, Kohn W (1964) Phys Rev 136: B864

    Google Scholar 

  2. Kohn W, Sham LJ (1965) Phys Rev A140: 1133

    Article  Google Scholar 

  3. Rajagopal AK (1980) Adv Chem Phys 41: 59

    Google Scholar 

  4. Callaway J, March NH (1984) Adv Solid State Phys 38: 135

    Google Scholar 

  5. Dreizler RM, Gross EKU (1990) Density Functional Theory. Springer Berlin Heidelberg, New York

    Google Scholar 

  6. Lang ND (1973) Adv Solid State Phys 28: 225

    Google Scholar 

  7. Parr RG, Yang W (1989) Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford

    Google Scholar 

  8. Ramana MV, Rajagopal AK (1983) Adv Chem Phys 54: 231

    Google Scholar 

  9. Engel E, Müller H, Speicher C, Dreizler RM (1995) in NATO-ASI

    Google Scholar 

  10. Gupta U, Rajagopal AK (1982) Physics Reports 87: 259

    Article  Google Scholar 

  11. Dandrea RG, Ashcroft NW, Carlsson AE (1986) Phys Rev B34: 2097

    Google Scholar 

  12. Rajagopal AK, Buot FA (1995) Phys Rev A51: 1770

    Google Scholar 

  13. Rajagopal AK, Buot FA (1995) Phys Rev B15: 6769

    Google Scholar 

  14. Runge E, Gross EKU (1984) Phys Rev Letts 52: 997

    Article  Google Scholar 

  15. Gross EKU, Kohn W (1990) Adv Quantum Chemistry, 27: 225

    Article  Google Scholar 

  16. Rajagopal AK and Buot FA (1994) Phys Lett 195: 312 and (1995) Phys Rev A51: 1883; see also (1995) Int J Qu Chem 56: 389

    Article  Google Scholar 

  17. Buot FA, Rajagopal AK (1993) Phys Rev Lett B48: 17217

    Google Scholar 

  18. Car R, Parrinello M (1985) Phys Rev Lett 55: 2471

    Article  PubMed  Google Scholar 

  19. Theilhaber J (1992) Phys Rev B46: 12990

    Google Scholar 

  20. Grumbach MP, Hohl D, Martin RM, Car R (1994) J Phys: Cond Matt 6: 1999

    Article  Google Scholar 

  21. Umezawa H (1993) Advanced Field Theory, American Institute of Physics, New York

    Google Scholar 

  22. Schmutz M (1978) Z Phys B30: 97

    Google Scholar 

  23. Kaku M (1993) Quantum Field Theory. Oxford University Press, New York, Ch. 4

    Google Scholar 

  24. Baym G (1962) Phys Rev 127: 1391

    Article  Google Scholar 

  25. Klein A (1960) Phys Rev 121: 950

    Article  Google Scholar 

  26. Casida ME (1995) Phys Rev A51: 2005

    Google Scholar 

  27. Schwinger J (1961) J Math Phys 2: 407

    Article  Google Scholar 

  28. Keldysh LV (1965) Soviet Phys JETP 20: 1018

    Google Scholar 

  29. Dubois DF (1967) Lectures in Theoretical Physics. Gordon and Breach, New York, p 469

    Google Scholar 

  30. Kwok PCK (1967) Adv Solid State Phys 20: 213

    Google Scholar 

  31. Buot FA, Rajagopal AK (1995) (in preparation)

    Google Scholar 

  32. Buot FA (1993) Phys Rep 234: 73

    Article  Google Scholar 

  33. Buot FA, Rajagopal AK (1995) Material Sc. and Eng. B: Solid State Materials for Advanced Technology 35: 303

    Google Scholar 

  34. Jacobson J, Pau S, Cao H, Björk G, Yamamoto Y (1995) Phys Rev A51: 2542

    Google Scholar 

  35. Hawrylak P, Schulz PA, Palacios JJ (1995) Solid St Comm 93: 909

    Article  Google Scholar 

  36. Serene JW, Hess DW (1992) in: Recent Progress in Many-Body Theories 3: 469

    Google Scholar 

  37. Deisz JJ, Eguiluz AG, Hanke W (1993) Phys Rev Lett 71: 2793

    Article  PubMed  Google Scholar 

  38. Pickett WE, Cohen RE, Krakauer H (1994) (preprint)

    Google Scholar 

  39. Bavli R, Metiu H (1993) Phys Rev A47: 3299

    Google Scholar 

  40. Truscott WS (1993) Phys Rev Lett 70: 1900

    Article  PubMed  Google Scholar 

  41. Buot FA, Rajagopal AK (1993) Phys Rev B48: 17217

    Google Scholar 

  42. Dobson JF (1994) Phys Rev Lett 73: 2244; Vignale G (1995) ibid 74: 3233; Rajagopal AK, Vignale G (1995) unpublished

    Article  PubMed  Google Scholar 

  43. Zeyher R (1991) Phys Rev B44: 9596

    Google Scholar 

  44. Klein BM, Cohen RE (1992) Phys Rev B45: 12405

    Google Scholar 

  45. Faisal FHM (1987) Theory of Multiphoton Processes. Plenum Press, New York; see also Cohen-Tannoudji C, Dupont-Roc J, Grynberg G (1989) Photons and Atoms. Wiley, New York; various articles on strong-field laser interaction especially by Faisal FHM. p. 27 and by Shih-I Chu p. 57 (1991) in: Radiation Effects and Defects in Solids. Part 1, 122–123

    Google Scholar 

  46. Ullrich CA, Grossman UJ, Gross EKU (1994) Phys Rev Lett 74: 872

    Article  Google Scholar 

  47. Buot FA, Jensen KL (1990) Phys Rev B42: 9429

    Google Scholar 

  48. Wacker O-J, Kummel R, Gross EKU (1994) Phys Rev Lett 73: 2915

    Article  PubMed  Google Scholar 

  49. Deumens E, Diz A, Longo R, Öhrn Y (1994) Rev Mod Phys 66: 917

    Article  Google Scholar 

  50. Broeckhove J, Lathouwers L (eds) (1992) Time-Dependent Quantum Molecular Dynamics. Plenum Press, New York

    Google Scholar 

  51. Allen RE (1994) Phys Rev B50: 18629

    Google Scholar 

  52. Singh Y (1991) Phys Reports 207: 351

    Article  Google Scholar 

  53. Rajagopal AK, Buot FA (1994) Phys Rev E50: 721

    Google Scholar 

  54. Jackiw R, Kerman A (1979) Phys Letts A71: 158

    Article  Google Scholar 

  55. Rajagopal AK (1995) (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. F. Nalewajski

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Rajagopal, A.K., Buot, F.A. (1996). Generalized functional theory of interacting coupled Liouvillean Quantum Fields of condensed matter. In: Nalewajski, R.F. (eds) Density Functional Theory II. Topics in Current Chemistry, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0016644

Download citation

  • DOI: https://doi.org/10.1007/BFb0016644

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61092-2

  • Online ISBN: 978-3-540-49946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics