Skip to main content

The Use of Carbon Footprint in the Wine Sector: Methodological Assumptions

  • Chapter
  • First Online:
Assessment of Carbon Footprint in Different Industrial Sectors, Volume 2

Part of the book series: EcoProduction ((ECOPROD))

  • 1640 Accesses

Abstract

Wine production is an important economic sector in many countries worldwide. In addition, its sales and consumption are steadily augmenting on an annual basis. This has increased the interest by stakeholders and consumers in the environmental sustainability of wine production practices. Despite the wide range of environmental dimensions that are monitored through environmental management tools, worldwide concerns related to greenhouse gas emissions and their effect on global warming have boosted the analysis of a single score indicator to monitor these emissions: carbon footprint (CF). In fact, due to the important consequences that climate change is expected to have on wine appellations and regions, CF has proliferated in this sector in recent years. The aim of this study is to provide a critical review on the application of CF to the wine sector based on peer-reviewed publications, focusing on the controversial methodological assumptions and the level of granularity of the life cycle inventory. Finally, a series of potential advancements in the application of CF to the wine sector will be assessed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ADEME (2010) Guide méthodologique version 6.1 du Bilan Carbone—Objectifs et principes de comptabilisation

    Google Scholar 

  • Anderson K, Findlay C, Fuentes S, Tyerman S (2008) Viticulture, wine and climate change. Garnaut climate change review. University of Adelaide, Australia. http://www.garnautreview.org.au/ca25734e0016a131/WebObj/01-HViticulture/$File/01-H%20Viticulture.pdf. Accessed on December 2012

  • Aranda A, Zabalza I, Scarpellini S (2005) Economic and environmental analysis of the wine bottle production in Spain by means of life cycle assessment. Int J Agric Res Gov Ecol 4:178–191. doi:10.1504/IJARGE.2005.007199

    Google Scholar 

  • Ardente F, Beccali G, Cellura M, Marvuglia A (2006) POEMS: a case study of an Italian wine-producing firm. Environ Manage 38:350–364

    Article  Google Scholar 

  • Barry MT (2011) Life cycle assessment and the New Zealand wine industry: a tool to support continuous environmental improvement. M.Sc. Dissertation. Massey University, Wellington, NZ

    Google Scholar 

  • Benedetto G (2013) The environmental impact of a Sardinian wine by partial life cycle assessment. Wine Econ Policy 2:33–41. doi:10.1016/j.wep.2013.05.003

    Article  Google Scholar 

  • Benedetto G, Rugani B, Vázquez-Rowe I (2014) Rebound effects due to economic choices when assessing the environmental sustainability of wine. Food Policy. Under review

    Google Scholar 

  • Bosco S, Di Bene C, Galli M et al (2011) Greenhouse gas emissions in the agricultural phase of wine production in the Maremma rural district in Tuscany, Italy. Ital J Agron 6:93–100. doi:10.4081/ija.2011.e15

    Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2000) Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int J Life Cycle Assess 5:349–357. doi:10.1007/BF02978670

    Article  CAS  Google Scholar 

  • BSI (2011) PAS 2050: 2011. Specification for the assessment of life cycle greenhouse gas emissions of goods and services. British Standards Institution

    Google Scholar 

  • Carballo-Penela A, García-Negro MC, Doménech Quesada JL (2009) A methodological proposal for corporate carbon footprint and its application to a wine-producing company in Galicia, Spain. Sustainability 1:302–318

    Google Scholar 

  • Cimino M, Marcelloni F (2012) Enabling traceability in the wine supply chain. In: Anastasi G, Bellini E, Di Nitto E, Ghezzi C, Tanca L, Zimeo E (eds) Methodologies and technologies for networked enterprises, vol 7200, pp 397–412. doi:10.1007/978-3-642-31739-2_20

  • Colman T, Päster P (2009) Red, white and “green”: the cost of carbon in the global wine trade. J Wine Resour 20:15–26. doi:10.1080/09571260902978493

    Article  Google Scholar 

  • Comandaru IM, Bârjoveanu G, Peiu N, Ene SA, Teodosiu C (2012) Life cycle assessment of wine: focus on water use impact assessment. Environ Eng Manag J 11:533–543

    CAS  Google Scholar 

  • ecoinvent® (2013) An introduction to the new features and data. www.ecoinvent.org

  • EMEP-Corinair (2006) EMEP/EEA air pollutant emission inventory guidebook, 2006. EEA

    Google Scholar 

  • EMEP-Corinair (2009) EMEP/EEA air pollutant emission inventory guidebook, 2009. EEA

    Google Scholar 

  • European Commission (2007) Council regulation on organic production and labelling of organic products and repealing regulation (EEC) No 2092/91 (EC) No 834/2007 of 28 June

    Google Scholar 

  • European Commission (2008) Council regulation laying down detailed rule for the Implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control (EC) No 889/2008 of 5 September

    Google Scholar 

  • European Commission (2012) Amending regulation (EC) No 889/2008 laying down detailed rules for the implementation of council regulation (EC) No 834/2007, as regards detailed rules on organic wine. (EC) No 203/2012 of 8 March

    Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus HJ, et al (2007) Implementation of life cycle impact assessment methods. ecoinvent® report No. 3, v2.0. Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  • Gabzdylova B, Raffensperger JF, Castka P (2009) Sustainability in the New Zealand wine industry: drivers, stakeholders and practices. J Clean Prod 17:992–998. doi:10.1016/j.jclepro.2009.02.015

    Article  Google Scholar 

  • García García J, Martínez-Cutillas A, Romero P (2012) Financial analysis of wine grape production using regulated deficit irrigation and partial-root zone drying strategies. Irrigation Sci 30:179–188. doi:10.1007/s00271-011-0274-4

    Article  Google Scholar 

  • Gazulla C, Raugei M, Fullana-i-Palmer P (2010) Taking a life cycle look at crianza wine production in Spain: where are the bottlenecks? Int J Life Cycle Assess 15:330–337. doi:10.1007/s11367-010-0173-6

    Article  CAS  Google Scholar 

  • Ghidossi R, Poupot C, Thibon C et al (2012) The influence of packaging on wine conservation. Food Control 23:302–311. doi:10.1016/j.foodcont.2011.06.003

    Article  CAS  Google Scholar 

  • Gómez JA, Llewellyn C, Basch G, Sutton PB, Dyson JS, Jones CA (2011) The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manage 27:504–512. doi:10.1111/j.1475-2743.2011.00367.x

  • Gonzales A, Klimchuk A, Martin M (2006) Life cycle assessment of wine production process. Finding relevant process efficiency and comparison to eco-wine production. Royal Institue of Technology, Stockholm

    Google Scholar 

  • González-García S, Silva FJ, Moreira MT et al (2011) Combined application of LCA and eco-design for the sustainable production of wood boxes for wine bottles storage. Int J Life Cycle Assess 16:224–237. doi:10.1007/s11367-011-0261-2

    Article  Google Scholar 

  • Hertwich G (2005) Consumption and the rebound effect. An industrial ecology perspective. J Ind Ecol 9:85–98. doi:10.1162/1088198054084635

    Article  Google Scholar 

  • Initiative GGP (2011) Product life cycle accounting and reporting standard. 150

    Google Scholar 

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories, vol 4: Agriculture, forestry and other land use

    Google Scholar 

  • IPCC (2007) Climate change 2007—the physical science basis. Contribution of Working Group I to the 4th IPCC Assessment Report

    Google Scholar 

  • ISO (2006a) ISO 14040. Environmental management—life cycle assessment—principles and framework. International Organization for Standardization

    Google Scholar 

  • ISO (2006b) ISO 14044. Environmental management—life cycle assessment—requirements and guidelines. International Organization for Standardization

    Google Scholar 

  • ISO (2013) ISO 14067—Carbon footprint of products—requirements and guidelines for quantification and communication. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59521

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343. doi:10.1007/s10584-005-4704-2

    Article  Google Scholar 

  • Kavargiris SE, Mamolos AP, Tsatsarelis CA et al (2009) Energy resources’ utilization in organic and conventional vineyards: energy flow, greenhouse gas emissions and biofuel production. Biomass Bioenerg 33:1239–1250. doi:10.1016/j.biombioe.2009.05.006

    Article  CAS  Google Scholar 

  • Kounina A, Tatti E, Humbert S, Pfister R, Pike A, Ménard JF, Loerincik Y, Jolliet O (2012) The importance of considering product loss rates in life cycle assessment: the example of closure systems for bottled wine. Sustainability 4:2673–2706. doi:10.3390/su4102673

    Google Scholar 

  • Laurent A, Olsen SI, Hauschild MZ (2012) Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46:4100–4108. doi:10.1021/es204163f

    Article  CAS  Google Scholar 

  • Lenten LJA, Mossa I (1999) Modelling the trend and seasonality in the consumption of alcoholic beverages in the United Kingdom. Appl Econ 31:795–804. doi:10.1080/000368499323760

    Article  Google Scholar 

  • Lockshin L, Mueller S, Louviere J et al (2009) Development of a new method to measure how consumers choose wine. Wine Ind J 24:37–43

    Google Scholar 

  • Lotter DW (2003) Organic agriculture. J Sustain Agr 21:59–128. doi:10.1300/J064v21n04_06

    Article  Google Scholar 

  • Marvuglia A, Benetto E, Rege S, Jury C (2013) Modelling approaches for consequential life cycle assessment (C-LCA) of bioenergy: critical review and proposed framework for biogas production. Renew Sust Energ Rev 25:768–781. doi:10.1016/j.rser.2013.04.031

    Article  CAS  Google Scholar 

  • Masson P (2009) Biodinámica: guía práctica para agricultores y aficionados. Editorial Fertilidad de la Tierra, Estella, Navarra

    Google Scholar 

  • McGovern PE, Fleming SJ, Katz SH (1996) The origins and ancient history of wine. Gordon and Breach Publishers, Amsterdam

    Google Scholar 

  • Mira de Orduña R (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43:1844–1855. doi:10.1016/j.foodres.2010.05.001

    Article  CAS  Google Scholar 

  • Moreira MT, Vázquez-Rowe I, Villanueva-Rey P, Feijoo G (2011) The importance of timeline analysis in viticulture. A case study based on Rías Baixas production area (NW Spain). Proceeding from LCA XI Instruments for Green Futures Markets

    Google Scholar 

  • Nemecek T, Kägi T (2007) Life cycle inventories of agricultural production systems. ecoinvent® report No. 15, 353 pages

    Google Scholar 

  • Neto B, Dias AC, Machado M (2013) Life cycle assessment of the supply chain of a Portuguese wine: from viticulture to distribution. Int J Life Cycle Assess 1–13. doi:10.1007/s11367-012-0518-4

  • Niccolucci V, Galli A, Kitzes J et al (2008) Ecological Footprint analysis applied to the production of two Italian wines. Agr Ecosyst Environ 128:162–166. doi:10.1016/j.agee.2008.05.015

    Article  Google Scholar 

  • Nicholls CI, Parrella MP, Altieri MA (2001) Reducing the abundance of leafhoppers and thrips in a Northern California organic vineyard through maintenance of full season floral diversity with summer cover crops. Agr Forest Entomol 2:107–113. doi:10.1046/j.1461-9563.2000.00054.x

    Article  Google Scholar 

  • Notarnicola B, Tassielli G, Nicoletti M (2003) LCA of wine production. In: Mattsonn B, Sonesson U (eds) Environmentally-friendly food processing. Woodhead Publishing Ltd., Cambridge, pp 306–326

    Chapter  Google Scholar 

  • Notarnicola B, Tassielli G, Settanni E (2010) Including more technology in the production of a quality wine: the importance of functional unit. In: Proceedings of the 7th international conference on LCA in the agri-food sector, vol 1, pp 235–240

    Google Scholar 

  • OIV (2011) General principles of the OIV greenhouse gas accounting protocol (GHGAP) for the vine and wine sector. Resolution OIV-CST 431-2011. General Assembly of Member States, Montpellier, France

    Google Scholar 

  • OIV (2013) International Organisation of Vine and Wine. Statistical report on world vitiviniculture

    Google Scholar 

  • Pattara C, Raggi A, Cichelli A (2012) Life cycle assessment and carbon footprint in the wine supply-chain. Environ Manage 49:1247–1258. doi:10.1007/s00267-012-9844-3

    Article  Google Scholar 

  • Petti L, Ardente F, Bosco S, De Camillis C, Masotti P, Pattara C, Raggi A, Tassielli G (2010) State of the art of life cycle assessment (LCA) in the wine industry. In: Proceedings of 7th international conference on life cycle assessment in the agri-food sector, Bari, Italy, pp 493–498

    Google Scholar 

  • Pizzigallo ACI, Granai C, Borsa S (2008) The joint use of LCA and emergy evaluation for the analysis of two Italian wine farms. J Environ Manage 86:396–406. doi:10.1016/j.jenvman.2006.04.020

    Article  CAS  Google Scholar 

  • Point E, Tyedmers P, Naugler C (2012) Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. J Clean Prod 27:11–20. doi:10.1016/j.jclepro.2011.12.035

    Article  Google Scholar 

  • Ramos S, Vázquez-Rowe I, Artetxe I et al (2011) Environmental assessment of the Atlantic mackerel (Scomber scombrus) season in the Basque Country. Increasing the timeline delimitation in fishery LCA studies. Int J Life Cycle Assess 16:599–610. doi:10.1007/s11367-011-0304-8

    Article  Google Scholar 

  • Ridoutt B, Eady S, Sellahewa J, Simons L, Bektash R (2009) Water footprinting at the product brand level: case study and future challenges. J Clean Prod 17:1228–1235. doi:10.1016/j.clepro.2009.03.002

    Article  Google Scholar 

  • Rives J, Fernández-Rodríguez I, Rieradevall J, Gabarrell X (2011) Environmental analysis of the production of natural cork stoppers in Southern Europe (Catalonia e Spain). J Clean Prod 19:259–271. doi:10.1016/j.clepro/2010.01.007

    Article  Google Scholar 

  • Roux EG, Peisach M, Pineda CA, Pougnet MAB (1988) The toxic effect of aluminium in vines. J Radioanal Nucl Ch Ar 120:97–104. doi:10.1007/BF02037855

    Article  Google Scholar 

  • Rugani B, Vázquez-Rowe I, Benedetto G, Benetto E (2013) A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. J Clean Prod 54:61–77. doi:10.1016/j.jclepro.2013.04.036

    Article  Google Scholar 

  • Ruggieri L, Cadena E, Martínez-Blanco J et al (2009) Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J Cle Prod 17:830–838. doi:10.1016/j.jclepro.2008.12.005

    Article  Google Scholar 

  • Smyth M, Russell J (2009) From graft to bottle—analysis of energy use in viticulture and wine production and the potential for solar renewable technologies. Renew Sust Energ Rev 13:1985–1993. doi:10.1016/j.rser/2009.01.007

    Article  Google Scholar 

  • Sorrell S, Dimitropoulos J (2008) The rebound effect: microeconomic definitions, limitations and extensions. Ecol Econ 65:636–649. doi:10.1016/j.ecolecon/2007.08.013

    Article  Google Scholar 

  • Tate AB (2001) Global warming’s impact on wine. J Wine Res 12:95–109. doi:10.1080/09571260120095012

    Article  Google Scholar 

  • Team CW, Pachauri RK, Reisinger A (2007) IPCC, 2007: Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. p 104

    Google Scholar 

  • Udo de Haes HA (2006) Life-cycle assessment and the use of broad indicators. J Ind Ecol 10:5–7. doi:10.1162/jiec.2006.10.3.5

    Article  Google Scholar 

  • UNEP (2011) Global guidance principles for life cycle assessment databases a basis for greener processes and products. Shonan guidance principles. Life Cycle Initiative, SETAC and United Nations Environment Programme

    Google Scholar 

  • Vázquez-Rowe I, Moreira MT, Feijoo G (2012a) Environmental assessment of frozen common octopus (Octopus vulgaris) captured by Spanish fishing vessels in the Mauritanian EEZ. Marine Policy 36:180–188. doi:10.1016/j.marpol.2011.05.002

    Article  Google Scholar 

  • Vázquez-Rowe I, Villanueva-Rey P, Iribarren D et al (2012b) Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). J Clean Prod 27:92–102. doi:10.1016/j.jclepro.2011.12.039

    Article  Google Scholar 

  • Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2012c) Environmental analysis of Ribeiro wine from a timeline perspective: harvest year matters when reporting environmental impacts. J Environ Manage 98:73–83. doi:10.1016/j.jenvman.2011.12.009

    Article  CAS  Google Scholar 

  • Vázquez-Rowe I, Rugani B, Benetto E (2013a) Tapping carbon footprint variations in the European wine sector. J Cleaner Prod 43:146–155. doi:10.1016/j.jclepro.2012.12.036

    Article  Google Scholar 

  • Vázquez-Rowe I, Marvuglia A, Rege S, Benetto E (2013b) Applying consequential LCA to support energy policy: land use change effects of bioenergy production. Sci Total Environ. doi:10.1016/j.scitotenv.2013.10.097

    Google Scholar 

  • Vázquez-Rowe I, Rege S, Marvuglia A, Thénie J, Haurie A, Benetto E (2013c) Application of three independent consequential LCA approaches to the agricultural sector in Luxembourg. Int J Life Cycle Assess 18:1593–1604. doi:10.1007/s11367-013-0604-2

    Google Scholar 

  • Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2013d) The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting. Food Policy 41:94–102. doi:10.1016/j.foodpol.2013.04.009

    Article  Google Scholar 

  • Vázquez-Rowe I, Villanueva-Rey P, Mallo J, De la Cerda JJ, Moreira MT, Feijoo G (2013e) Carbon footprint of a multi-ingredient seafood product from a business-to business perspective. J Clean Prod 44:200–210. doi:10.1016/j.jclepro.2012.11.049

    Article  Google Scholar 

  • Vázquez-Rowe I, Villanueva-Rey P, Hospido A, Moreira MT, Feijoo G (2014) Life cycle assessment of European pilchard (Sardina pilchardus) consumption. A case study for Galicia (NW Spain). Science of the Total Environment. Accepted for publication

    Google Scholar 

  • Venkat K (2012) Comparison of twelve organic and conventional farming systems: a life cycle greenhouse gas emissions perspective. J Sust Agr 36:620–649. doi:10.1080/10440046.2012.672378

    Article  Google Scholar 

  • Villanueva-Rey P, Vázquez-Rowe I, Moreira MT, Feijoo G (2013) Comparative life cycle assessment in the wine sector: biodynamic vs. conventional viticulture activities in NW Spain. J Clean Prod. doi:10.1016/j.jclepro.2013.08.026

    Google Scholar 

  • Weber CL, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42:3508–3513. doi:10.1021/es702969f

    Article  CAS  Google Scholar 

  • Weidema BP (2003) Market information in life cycle assessment. Environmental Project No. 863. Danish Environmental Protection Agency, Copenhagen, DK. http://www2.mst.dk/udgiv/publications/2003/87-7972-991-6/pdf/87-7972-992-4.pdf. Accessed on December 2012

  • Weidema BP, Thrane M, Christensen P, Schmidt J, Løkke S (2008) Carbon footprint—a catalyst for life cycle assessment? J Ind Ecol 12:3–6. doi:10.1111/j.1530-9290.2008.00005.x

    Article  Google Scholar 

  • Ziegler F, Winther U, Skontorp-Hognes E, Emanuelsson A, Sund V, Ellingsen H (2013) The carbon footprint of Norwegian seafood products. J Ind Ecol 17:103–116. doi:10.1111/j.1530-9290.2012.00485.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Villanueva-Rey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Villanueva-Rey, P., Vázquez-Rowe, I., Moreira, M.T., Feijoo, G. (2014). The Use of Carbon Footprint in the Wine Sector: Methodological Assumptions. In: Muthu, S. (eds) Assessment of Carbon Footprint in Different Industrial Sectors, Volume 2. EcoProduction. Springer, Singapore. https://doi.org/10.1007/978-981-4585-75-0_9

Download citation

Publish with us

Policies and ethics