Skip to main content

Design and Implementation

  • Chapter
  • First Online:
Segmentation of Hand Bone for Bone Age Assessment

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 775 Accesses

Abstract

In previous chapter, the weaknesses of conventional segmentation methods have been identified. This concludes the desired segmentation criteria in order to guide the mechanism of the proposed framework of segmentation. The segmentation is performed to partition the hand bone from its background and soft-tissue region in the beginning of this chapter. The challenges of hand bone segmentation are the overlapping intensity between the soft-tissue region and the spongy bone region within the hand bone. Three modules of techniques will be discussed and implemented to solve the problem in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakib A, Oulhadj H, Siarry P (2010) Image thresholding based on Pareto multiobjective optimization. Eng Appl Artif Intell 23:313–320

    Article  Google Scholar 

  2. Chen S-D, Rahman Ramli A (2004) Preserving brightness in histogram equalization based contrast enhancement techniques. Digital Signal Process 14:413–428

    Article  Google Scholar 

  3. Yu W, Qian C, Baeomin Z (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45:68–75

    Article  Google Scholar 

  4. Cao F, Huang HK, Pietka E, Gilsanz V (2000) Digital hand atlas and web-based bone age assessment: system design and implementation. Comput Med Imaging Graph 24:297–307

    Article  Google Scholar 

  5. Sim KS, Tso CP, Tan YY (2007) Recursive sub-image histogram equalization applied to gray scale images. Pattern Recogn Lett 28:1209–1221

    Article  Google Scholar 

  6. Kim M, Min C (2008) Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Trans Consum Electron 54:1389–1397

    Article  Google Scholar 

  7. Kim T, Paik J (2008) Adaptive contrast enhancement using gain-controllable clipped histogram equalization. IEEE Trans Consum Electron 54:1803–1810

    Article  Google Scholar 

  8. Seungjoon Y, Jae Hwan O, Yungfun P (2003) Contrast enhancement using histogram equalization with bin underflow and bin overflow. In: Proceedings of international conference on image processing, 2003 (ICIP 2003) (ed), vol 1, pp I-881-4

    Google Scholar 

  9. Perona P (1989) Anisotropic diffusion processes in early vision. In: Multidimensional signal processing workshop, 1989. Sixth edition, p 68

    Google Scholar 

  10. Witkin A (1983) Scale-space filtering. In 8th international joint conference of artificial intelligence. (ed), Vol 2, pp 1019–22

    Google Scholar 

  11. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  12. Aja-Fernández S, Vegas-Sánchez-Ferrero G, Martín-Fernández M, Alberola-López C (2009) Automatic noise estimation in images using local statistics. Additive and multiplicative cases. Image Vis Comput 27:756–770

    Article  Google Scholar 

  13. Yongjian Y, Acton ST (2002) Speckle reducing anisotropic diffusion. IEEE Trans Image Process 11:1260–1270

    Article  MathSciNet  Google Scholar 

  14. Fuller W (2009) Sampling Statistics. Vol. 560, Wiley, London

    Google Scholar 

  15. Capuzzo Dolcetta I, Ferretti R (2001) Optimal stopping time formulation of adaptive image filtering. Appl Math Optim 43:245–258

    Article  MathSciNet  MATH  Google Scholar 

  16. Papandreou G, Maragos P (2005) A cross-validatory statistical approach to scale selection for image denoising by nonlinear diffusion. In: IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (ed), Vol. 1, IEEE computer society, pp 625–30

    Google Scholar 

  17. Sun J, Xu Z (2010) Scale selection for anisotropic diffusion filter by Markov random field model. Pattern Recogn 43:2630–2645

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerig G, Kubler O, Kikinis R, Jolesz FA (1992) Nonlinear anisotropic filtering of MRI data. IEEE Trans Med Imaging 11:221–232

    Article  Google Scholar 

  19. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural Features for Image Classification. IEEE Trans Syst, Man Cybern 3:610–621

    Article  Google Scholar 

  20. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7:1–13

    Article  MATH  Google Scholar 

  21. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Chai Hum .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Hum, Y.C. (2013). Design and Implementation. In: Segmentation of Hand Bone for Bone Age Assessment. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4451-66-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-66-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4451-65-9

  • Online ISBN: 978-981-4451-66-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics