Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 773 Accesses

Abstract

In this chapter, we review the techniques of histogram equation, hand bone segmentation and image segmentation techniques. The basic concepts of those techniques will be analyzed and compared. The objective of this chapter is to show to readers that current techniques are not sufficient to address the hand bone segmentation problems due to various restrictions. Hence, this motivates the need for new technique that is capable of segmenting the hand bone so that the segmented hand bone can be established and implemented in the fully automated computer-aided skeletal age scoring system. The proposed novel framework of hand bone segmentation will then be presented in next Chap. 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aja-Fernández S, De Luis-García R, Martín-Fernández MÁ, Alberola-López C (2004) A computational TW3 classifier for skeletal maturity assessment. A Computing with Words approach. J Biomed Inform 37:99–107

    Article  Google Scholar 

  2. Niemeijer M, Van Ginneken B, Maas CA, Beek FJA, and Viergever MA (2003) Assessing the skeletal age from a hand radiograph: Automating the tanner-whitehouse method. In: Sonka M and Fitzpatrick JM (eds), Proceedings of the 2003 SPIE Medical Imaging. vol 5032 II, pp 1197–205, San Diego, CA

    Google Scholar 

  3. Pietka E, Gertych A, Pospiech S, Cao F, Huang HK, Gilsanz V (2001) Computer-assisted bone age assessment: Image preprocessing and epiphyseal/metaphyseal ROI extraction. IEEE Trans Med Imaging 20:715–729

    Article  Google Scholar 

  4. Pietka E, Kaabi L, Kuo ML, Huang HK (1993) Feature extraction in carpal-bone analysis. IEEE Trans Med Imaging 12:44–49

    Article  Google Scholar 

  5. Somkantha K, Theera-Umpon N, Auephanwiriyakul S (2011) Boundary detection in medical images using edge following algorithm based on intensity gradient and texture gradient features. IEEE Trans Biomed Eng 58:567–573

    Article  Google Scholar 

  6. Zhang J, Huang HK (1997) Automatic background recognition and removal (ABRR) in computed radiography images. IEEE Trans Med Imaging 16:762–771

    Article  Google Scholar 

  7. Han CC, Lee CH, Peng WL (2007) Hand radiograph image segmentation using a coarse-to-fine strategy. Pattern Recogn 40:2994–3004

    Article  Google Scholar 

  8. Hsieh CW, Jong TL, Tiu CM (2008) Carpal growth assessment based on fuzzy description. In Soft Computing in Industrial Applications, 2008. SMCia’08. IEEE Conference on 2008, Muroran, pp 355–358

    Google Scholar 

  9. Sotoca JM, Iñesta JM, Belmonte MA (2003) Hand bone segmentation in radioabsorptiometry images for computerised bone mass assessment. Comput Med Imaging Graph 27:459–467

    Article  Google Scholar 

  10. Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515

    Article  Google Scholar 

  11. Smyth PP, Taylor CJ, Adams JE (1997) Automatic measurement of vertebral shape using active shape models. Image Vis Comput 15:575–581

    Article  Google Scholar 

  12. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1:321–331

    Article  Google Scholar 

  13. Mahmoodi S, Sharif BS, Chester EG, Owen JP, and Lee REJ (1997) Automated vision system for skeletal age assessment using knowledge based techniques. In: IEE international conference on image processing and its applications, 443 pt 2 (ed.), pp 809–13, IEE, Dublin, Irel

    Google Scholar 

  14. Mahmoodi S, Sharif BS, Graeme Chester E, Owen JP, Lee R (2000) Skeletal growth estimation using radiographic image processing and analysis. IEEE Trans Inf Technol Biomed 4:292–297

    Article  Google Scholar 

  15. Sebastian TB, Tek H, Crisco JJ, Kimia BB (2003) Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med Image Anal 7:21–45

    Article  Google Scholar 

  16. Tristán-Vega A, Arribas JI (2008) A radius and ulna TW3 bone age assessment system. IEEE Trans Biomed Eng 55:1463–1476

    Article  Google Scholar 

  17. Giordano D, Spampinato C, Scarciofalo G, Leonardi R (2010) An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial/metaphysial bones. IEEE Trans Instrum Meas 59:2539–2553

    Article  Google Scholar 

  18. Jong-Min L, Whoi-Yul K (2008) Epiphyses extraction method using shape information for left hand radiography. In: Convergence and Hybrid Information Technology, 2008. ICHIT ‘08. International Conference on 28–30 Aug. 2008. pp 319–326

    Google Scholar 

  19. Michael DJ, Nelson AC (1989) HANDX: a model-based system for automatic segmentation of bones from digital hand radiographs. IEEE Trans Med Imaging 8:64–69

    Article  Google Scholar 

  20. Manos G, Cairns AY, Ricketts IW, Sinclair D (1993) Automatic segmentation of hand-wrist radiographs. Image Vis Comput 11:100–111

    Article  Google Scholar 

  21. Manos GK, Cairns AY, Rickets IW, Sinclair D (1994) Segmenting radiographs of the hand and wrist. Comput Methods Programs Biomed 43:227–237

    Article  Google Scholar 

  22. Sharif BS, Zaroug SA, Chester EG, Owen JP, and Lee EJ (1994) Bone edge detection in hand radiographic images. In: Engineering in medicine and biology society, 1994. Engineering advances: new opportunities for biomedical engineers. Proceedings of the 16th annual international conference of the IEEE. pt 1 (ed.), vol 16, pp 514–5, Baltimore, MD, USA

    Google Scholar 

  23. Mahmoodi S, Sharif BS, Chester EG, Owen JP, and Lee REJ (1999) Bayesian estimation of growth age using shape and texture descriptors. In: Image processing and its applications, 1999. Seventh international conference on, 465 II (ed.), vol 2, pp 489–493, IEE, Manchester, UK

    Google Scholar 

  24. Pietka E, Pospiech-Kurkowska S, Gertych A, Cao F (2003) Integration of computer assisted bone age assessment with clinical PACS. Comput Med Imaging Graph 27:217–228

    Article  Google Scholar 

  25. Pietka E, Gertych A, Pospiech-Kurkowska S, Cao F, Huang HK, Gilzanz V (2004) Computer-assisted bone age assessment: graphical user interface for image processing and comparison. J Digit Imaging 17:175–188

    Article  Google Scholar 

  26. Hsieh CW, Jong TL, Chou YH, Tiu CM (2007) Computerized geometric features of carpal bone for bone age estimation. Chin Med J 120:767–770

    Google Scholar 

  27. Zhang A, Gertych A, Liu BJ (2007) Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Comput Med Imaging Graph 31:299–310

    Article  Google Scholar 

  28. Tran Thi My Hue MGS, Kim JY, Choi SH (2011) Hand bone image segmentation using watershed transform with multistage merging. J Korean Inst Inf Technol 9:59–66

    Google Scholar 

  29. Thodberg HH (2002) Hands-on experience with active appearance models. In: Sonka M, Michael Fitzpatrick J (eds), vol 4684 I, pp 495–506, San Diego, CA

    Google Scholar 

  30. Thodberg HH, Rosholm A (2003) Application of the active shape model in a commercial medical device for bone densitometry. Image Vis Comput 21:1155–1161

    Article  Google Scholar 

  31. Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28:52–66

    Article  Google Scholar 

  32. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13:146–168

    Article  Google Scholar 

  33. Gonzalez R, Woods R (2007) Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  34. Bernsen J (1986) Dynamic Thresholding of Grey-Level Images. In: International conference on pattern recognition, pp. 1251–5, IEEE, Paris, France

    Google Scholar 

  35. Lee SU, Yoon Chung S, Park RH (1990) A comparative performance study of several global thresholding techniques for segmentation. Comput Vis, Graph, Image Process 52:171–190

    Article  Google Scholar 

  36. Shapiro L and Stockman G (2001) Computer Vision. Prentice Hall, Upper Saddle River

    Google Scholar 

  37. Liyuan L, Ran G, Weinan C (1997) Gray level image thresholding based on fisher linear projection of two-dimensional histogram. Pattern Recogn 30:743–749

    Article  Google Scholar 

  38. Baradez MO, McGuckin CP, Forraz N, Pettengell R, Hoppe A (2004) Robust and automated unimodal histogram thresholding and potential applications. Pattern Recogn 37:1131–1148

    Article  Google Scholar 

  39. Yan F, Zhang H, Kube CR (2005) A multistage adaptive thresholding method. Pattern Recogn Lett 26:1183–1191

    Article  Google Scholar 

  40. Tsai D-M (1995) A fast thresholding selection procedure for multimodal and unimodal histograms. Pattern Recogn Lett 16:653–666

    Article  Google Scholar 

  41. Parker JR (1991) Gray level thresholding in badly illuminated images. IEEE Trans Pattern Anal Mach Intell 13:813–819

    Article  Google Scholar 

  42. Zhao M, Yang Y, Yan H (2000) An adaptive thresholding method for binarization of blueprint images. Pattern Recogn Lett 21:927–943

    Article  Google Scholar 

  43. Shafait F, Keysers D, and Breuel TM (2008) Efficient implementation of local adaptive thresholding techniques using integral images. In: Document recognition and retrieval XV, vol 6815, San Jose, CA

    Google Scholar 

  44. Huang Q, Gao W, Cai W (2005) Thresholding technique with adaptive window selection for uneven lighting image. Pattern Recogn Lett 26:801–808

    Article  Google Scholar 

  45. Niblack W (1990) An Introduction to Digital Image Processing. Prentice-Hall, Upper Saddle River

    Google Scholar 

  46. De Santis A, Sinisgalli C (1999) A Bayesian approach to edge detection in noisy images. Circuits and systems i: fundamental theory and applications, IEEE Transactions on 1999, vol 46, pp 686–699

    Google Scholar 

  47. Whatmough RJ (1991) Automatic threshold selection from a histogram using the “exponential hull”. CVGIP: Graph Models Image Process 53:592–600

    Google Scholar 

  48. Luijendijk H (1991) Automatic threshold selection using histograms based on the count of 4-connected regions. Pattern Recogn Lett 12:219–228

    Article  Google Scholar 

  49. Guo R, Pandit SM (1998) Automatic threshold selection based on histogram modes and a discriminant criterion. Mach. Vision Appl 10:331–338

    Article  Google Scholar 

  50. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst, Man, Cybern 9:62–66

    Article  Google Scholar 

  51. Lu C, Zhu P, Cao Y (2010) The segmentation algorithm of improvement a two-dimensional Otsu and application research. In: Software technology and engineering (ICSTE), 2010 2nd international conference on 2010. Vol. 1, pp V176–V179, San Juan, PR

    Google Scholar 

  52. Ge Y, Yang RF, Zhang P (2012) Research on the image segmentation method based on improved two-dimension Otsu arithmetic. Hedianzixue Yu Tance Jishu/Nucl Electron Detect Technol 32:112–115

    Google Scholar 

  53. Scharcanski J, Venetsanopoulos AN (1997) Edge detection of color images using directional operators. IEEE Trans Circuits Syst Video Technol 7:397–401

    Article  Google Scholar 

  54. LingFei L, ZiLiang P (2008) An edge detection algorithm of image based on empirical mode decomposition. In Intelligent information technology application. IITA ‘08. Second international symposium on 2008. vol 1, pp 128–132

    Google Scholar 

  55. Bakalexis SA, Boutalis YS, and Mertzios BG (2002) Edge detection and image segmentation based on nonlinear anisotropic diffusion. In: Digital signal processing. DSP 2002. 2002 14th international conference on 2002. vol 2, pp 1203–6

    Google Scholar 

  56. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698

    Article  Google Scholar 

  57. You-yi Z, Ji-lai R, Lei W (2010) Edge detection methods in digital image processing. In: Computer science and education (ICCSE) 5th international conference on 2010. vol pp 471–473

    Google Scholar 

  58. Deriche R (1987) Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int J Comput Vis 1:167–187

    Google Scholar 

  59. Ding L, Goshtasby A (2001) On the Canny edge detector. Pattern Recogn 34:721–725

    Article  MATH  Google Scholar 

  60. Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15:11–15

    Article  Google Scholar 

  61. Hough P (1962) Method and means for recognizing complex patterns. In: United States Patent Office

    Google Scholar 

  62. Chung CH, Cheng SC, Chang CC (2010) Adaptive image segmentation for region-based object retrieval using generalized Hough transform. Pattern Recogn 43:3219–3232

    Article  MATH  Google Scholar 

  63. Xu X, Zhou Y, Cheng X, Song E, Li G (2012) Ultrasound intima–media segmentation using Hough transform and dual snake model. Comput Med Imaging Graph 36:248–258

    Article  Google Scholar 

  64. Kassim AA, Tan T, Tan KH (1999) A comparative study of efficient generalised Hough transform techniques. Image Vis Comput 17:737–748

    Article  Google Scholar 

  65. Shapiro V A (1996) On the hough transform of multi-level pictures. Pattern Recogn 29:589–602

    Article  Google Scholar 

  66. Hart PE (2009) How the Hough transform was invented [DSP History]. IEEE Signal Processing Magazine 26:18–22

    Article  Google Scholar 

  67. Ji J, Chen G, Sun L (2011) A novel Hough transform method for line detection by enhancing accumulator array. Pattern Recogn Lett 32:1503–1510

    Article  Google Scholar 

  68. Zheng L, Shi D (2011) Advanced Radon transform using generalized interpolated Fourier method for straight line detection. Comput Vis Image Underst 115:152–160

    Article  Google Scholar 

  69. Illingworth J, Kittler J (1987) The Adaptive Hough Transform. IEEE Trans Pattern Anal Mach Intell 9:690–698

    Article  Google Scholar 

  70. Nixon M (1990) Improving an extended version of the Hough transform. Signal Processing 19:321–335

    Article  Google Scholar 

  71. Kiryati N, Eldar Y, Bruckstein AM (1991) A probabilistic Hough transform. Pattern recognition 24:303–316

    Article  MathSciNet  Google Scholar 

  72. Hanif T, Sandler MB (1994) A counter-based Hough transform system. Microprocess Microsyst 18:19–26

    Article  Google Scholar 

  73. Torii A, Imiya A (2007) The randomized-Hough-transform-based method for great-circle detection on sphere. Pattern Recogn Lett 28:1186–1192

    Article  Google Scholar 

  74. Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn 13:111–122

    Article  MATH  Google Scholar 

  75. Lo RC, Tsai WH (1995) Gray-scale hough transform for thick line detection in gray-scale images. Pattern Recogn 28:647–661

    Article  Google Scholar 

  76. Kang CC, Wang WJ, Kang CH (2012) Image segmentation with complicated background by using seeded region growing. AEU—International Journal of Electronics and Communications 66:767–771

    Google Scholar 

  77. Fan J, Zeng G, Body M, Hacid M-S (2005) Seeded region growing: an extensive and comparative study. Pattern Recogn Lett 26:1139–1156

    Article  Google Scholar 

  78. Grinias I, Tziritas G (2001) A semi-automatic seeded region growing algorithm for video object localization and tracking. Sig Process: Image Commun 16:977–986

    Article  Google Scholar 

  79. Lin GC, Wang WJ, Kang CC, Wang CM (2012) Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing. Magn Reson Imaging 30:230–246

    Article  Google Scholar 

  80. Mehnert A, Jackway P (1997) An improved seeded region growing algorithm. Pattern Recogn Lett 18:1065–1071

    Article  Google Scholar 

  81. Tremeau A, Borel N (1997) A region growing and merging algorithm to color segmentation. Pattern Recogn 30:1191–1203

    Article  Google Scholar 

  82. Digabel H, Lantuéjou C (1978) Iterative algorithms. In: Actes du Second Symposium Europeen d’Analyse Quantitative des Microstructures en Sciences des Materiaux, Biologie et Medecine. pp 4–7 Caen

    Google Scholar 

  83. Beucher S and Lantuejoul C (1979) Use of Watersheds in Contour Detection. In: International workshop on image processing: Real-time edge and motion detection/estimation, Rennes, France

    Google Scholar 

  84. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13:583–598

    Article  Google Scholar 

  85. Cousty J, Bertrand G, Najman L, Couprie M (2010) Watershed cuts: thinnings, shortest path forests, and topological watersheds. IEEE Trans Pattern Anal Mach Intell 32:925–939

    Article  Google Scholar 

  86. Haris K, Efstratiadis SN, Maglaveras N, Katsaggelos AK (1998) Hybrid image segmentation using watersheds and fast region merging. IEEE Trans Image Process 7:1684–1699

    Article  Google Scholar 

  87. Kim JB, Kim HJ (2003) Multiresolution-based watersheds for efficient image segmentation. Pattern Recogn Lett 24:473–488

    Article  Google Scholar 

  88. Frucci M, Ramella G, Sanniti di Baja G (2007) Using resolution pyramids for watershed image segmentation. Image Vis Comput 25:1021–1031

    Article  Google Scholar 

  89. Jung CR, Scharcanski J (2005) Robust watershed segmentation using wavelets. Image Vis Comput 23:661–669

    Article  Google Scholar 

  90. Jung CR (2007) Combining wavelets and watersheds for robust multiscale image segmentation. Image Vis Comput 25:24–33

    Article  Google Scholar 

  91. Hamarneh G, Li X (2009) Watershed segmentation using prior shape and appearance knowledge. Image Vis Comput 27:59–68

    Article  Google Scholar 

  92. Masoumi H, Behrad A, Pourmina MA, Roosta A (2012) Automatic liver segmentation in MRI images using an iterative watershed algorithm and artificial neural network. Biomed Signal Process Control 7:429–437

    Article  Google Scholar 

  93. Meyer F (1994) Topographic distance and watershed lines. Signal Processing 38:113–125

    Article  MATH  Google Scholar 

  94. Tarabalka Y, Chanussot J, Benediktsson JA (2010) Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recogn 43:2367–2379

    Article  MATH  Google Scholar 

  95. McInerney T, Terzopoulos D (2000) Deformable models. Academic Press, San Diego

    Google Scholar 

  96. Leymarie FF (1990) Tracking and Describing Deformable Objects Using Active Contour Models [Thesis]

    Google Scholar 

  97. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active Shape Models-Their Training and Application. Comput Vis Image Underst 61:38–59

    Article  Google Scholar 

  98. Xue Z, Li SZ, Teoh EK (2003) Bayesian shape model for facial feature extraction and recognition. Pattern Recogn 36:2819–2833

    Article  MATH  Google Scholar 

  99. Zheng Z, Jiong J, Chunjiang D, Liu X, Yang J (2008) Facial feature localization based on an improved active shape model. Inf Sci 178:2215–2223

    Article  Google Scholar 

  100. Sukno FM, Guerrero JJ, Frangi AF (2010) Projective active shape models for pose-variant image analysis of quasi-planar objects: Application to facial analysis. Pattern Recogn 43:835–849

    Article  MATH  Google Scholar 

  101. Jang D-S, Choi H-I (2000) Active models for tracking moving objects. Pattern Recogn 33:1135–1146

    Article  Google Scholar 

  102. Kim W, Lee J–J (2005) Object tracking based on the modular active shape model. Mechatronics 15:371–402

    Article  Google Scholar 

  103. Nuevo J, Bergasa LM, Llorca DF, Ocaña M (2011) Face tracking with automatic model construction. Image Vis Comput 29:209–218

    Article  Google Scholar 

  104. Liu Z, Shen H, Feng G, Hu D (2012) Tracking objects using shape context matching. Neurocomputing 83:47–55

    Article  Google Scholar 

  105. Hodge AC, Fenster A, Downey DB, Ladak HM (2006) Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D. Comput Methods Programs Biomed 84:99–113

    Article  Google Scholar 

  106. Aung MSH, Goulermas JY, Stanschus S, Hamdy S, Power M (2010) Automated anatomical demarcation using an active shape model for videofluoroscopic analysis in swallowing. Med Eng Phys 32:1170–1179

    Article  Google Scholar 

  107. Toth R, Tiwari P, Rosen M, Reed G, Kurhanewicz J, Kalyanpur A et al (2011) A magnetic resonance spectroscopy driven initialization scheme for active shape model based prostate segmentation. Med Image Anal 15:214–225

    Article  Google Scholar 

  108. Edwards GJ, Taylor CJ, Cootes TF (1998) Interpreting face images using active appearance models. In FG ‘98: Proceedings of the 3rd international conference on face & gesture recognition. IEEE computer society

    Google Scholar 

  109. Cootes TF, Page GJ, Jackson CB, Taylor CJ (1996) Statistical grey-level models for object location and identification. Image Vis Comput 14:533–540

    Article  Google Scholar 

  110. Cootes TF, Edwards GJ, Taylor CJ (2001) Active Appearance Models. IEEE Trans Pattern Anal Mach Intell 23:681–685

    Article  Google Scholar 

  111. Butakoff C, Frangi AF (2010) Multi-view face segmentation using fusion of statistical shape and appearance models. Comput Vis Image Underst 114:311–321

    Article  Google Scholar 

  112. Roberts M, Cootes T, Pacheco E, Adams J (2007) Quantitative Vertebral Fracture Detection on DXA Images Using Shape and Appearance Models. Academic Radiology 14:1166–1178

    Article  Google Scholar 

  113. Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12:335–357

    Article  Google Scholar 

  114. Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56:907–922

    Article  Google Scholar 

  115. Gao X, Su Y, Li X, Tao D (2010) A Review of Active Appearance Models. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 40:145–158

    Article  Google Scholar 

  116. Thodberg HH, Van Rijn RR, Tanaka T, Martin DD, Kreiborg S (2010) A paediatric bone index derived by automated radiogrammetry. Osteoporos Int 21:1391–1400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Chai Hum .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Hum, Y.C. (2013). Literature Reviews. In: Segmentation of Hand Bone for Bone Age Assessment. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4451-66-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-66-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4451-65-9

  • Online ISBN: 978-981-4451-66-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics