Skip to main content

Estimation of Lateral Inflows Using Data Assimilation in the Context of Real-Time Flood Forecasting for the Marne Catchment in France

  • Chapter
  • First Online:
Advances in Hydroinformatics

Abstract

The present study describes the assimilation of discharge in situ data for operational flood forecasting. The study was carried out on the Marne River (France) catchment where lateral inflows’ uncertainty is important due to karstic areas. This source of error was partly accounted for using an Extended Kalman Filter (EKF) algorithm built on the top of a mono-dimensional hydraulic model. The lateral inflows were sequentially adjusted over a sliding 48 h time window. The correction leads to a significant improvement in the simulated water level and discharge in re-analysis and forecast modes. These results pave the way for the operational use of the data assimilation (DA) procedure for real-time forecasting at the French flood forecasting service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Service de l’Observation et des Statistiques—Commissariat Général au Développement Durable (SOeS—CGDD). (2009). Croissance du nombre de logements en zones inondables, Le point sur, 6, Février.

    Google Scholar 

  2. Coccia, G., & Todini, E. (2008). Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrology and Earth System Sciences, 7, 9219–9270.

    Google Scholar 

  3. Weerts, A. H. & Liu, Y. (2011). Advances in data assimilation for operational hydrologic forecasting. EOS Transactions of the AGU, 92.

    Google Scholar 

  4. Duan, Q., Gupta, V., Sorooshian, S., Rousseau, A. N. & Turcotte, R. (2003). Preface in calibration of watershed Models. In Q. Duan et al. (Eds.), Water Science Appli Ser (vol. 6). Washington, DC: AGU.

    Google Scholar 

  5. Vrugt, J. A., Gupta, H. V., Bouten, W., & Sorooshian, S. (2003). A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrological parameters. Water Resources Research, 39(8), 1–14.

    Google Scholar 

  6. Schumann, G., Bates, P.D., Horritt, M.S., Matgen, P. & Pappenberger, F. (2009). Progress in integration of remote sensing derived flood extend and stage data and hydraulic models. Reviews of Geophysics, 47.

    Google Scholar 

  7. Bouttier, F., & Courtier, P. (1999). Data assimilation concepts and methods. ECMWF Lecture Note.

    Google Scholar 

  8. Liu, Y., & Gupta, H. V. (2007). Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resource Research, 43, W07401.

    Google Scholar 

  9. Maclaughlin, D., & Townley, L. (1996). A reassessment of the groundwater inverse problem. Water Resources Research, 32, 1131–1161.

    Article  Google Scholar 

  10. McLaughlin, D. (2002). An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering. Advances in Water Resources, 25, 1275–1286.

    Article  Google Scholar 

  11. Reichle, R. H. (2008). Data assimilation methods in the Earth sciences. Advances in Water Resources, 31, 1411–1418.

    Article  Google Scholar 

  12. Drogue, G., Pfister, L., Leviandier, T., El Idrissi, A., Iffly, J. F., Matgen, P., et al. (2004). Simulating the spatio-temporal variability of streamflow response to climate change scenarios in a mesoscale basin. Journal of Hydrology, 293, 255–269.

    Article  Google Scholar 

  13. Thirel, G., Martin, E., Mahfouf, J. F., Massart, S., Ricci, S., & Habets, F. (2010). A past discharges assimilation system for ensemble streamflow forecasts over France, Part 1: Description and validation of the assimilation system. Hydrology and Earth System Sciences, 14, 1623–1637.

    Article  Google Scholar 

  14. Thirel, G., Martin, E., Mahfouf, J. F., Massart, S., Ricci, S., Regimbeau, F., et al. (2010). A past discharges assimilation system for ensemble streamflow forecasts over France, Part 2: Impact on the streamflow forecasts. Hydrology and Earth System Sciences, 14, 1639–1653.

    Article  Google Scholar 

  15. Dechant, C. M., & Moradkhani, H. (2011). Radiance data assimilation for operational snow and streamflow forecasting. Advances in Water Resources Research, 34, 351–364.

    Article  Google Scholar 

  16. Seo, D. J., Cajina, L., Corby, R., & Howieson, T. (2009). Automatic state updating for operational streamflow forecasting via variational data assimilation. Journal of Hydrology, 367, 255–275.

    Article  Google Scholar 

  17. Seo, D. J., Koren, V., & Cajina, N. (2003). Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting. Journal of Hydrometeorology, 4, 627–641.

    Article  Google Scholar 

  18. Gelb, A. (1974). Applied optimal estimation. Cambridge Mass.: MIT Press.

    Google Scholar 

  19. Evensen, G. (1994). Sequential data assimilation with a non linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99, 10143–10162.

    Article  Google Scholar 

  20. Jean-Baptiste, N., Malaterre, P. O., Dorée, C., & Sau, J. (2009). Data assimilation for real-time estimation of hydraulics states and unmeasured perturbations in a 1D hydrodynamic model. Mathematics and Computers in Simulation, 81, 2201–2214.

    Article  Google Scholar 

  21. Malaterre, P. O., Baume, J.P. & Jean-Baptiste, N. (2010). Calibration of open channel flow models: A system analysis and control engineering approach. SimHydro.

    Google Scholar 

  22. Moradkhani, H., Sorooshian, S., Gupta, H., & Houser, P. (2005). Dual-state parameters estimation of hydrological models using ensemble Kalman filter. Advances in Water Resources, 28, 135–147.

    Article  Google Scholar 

  23. Ricci, S., Piacentini, A., Thual, O., Le Pape, E., & Jonville, G. (2011). Correction of upstream flow and hydraulics state with data assimilation in the context of flood forecasting. Hydrology and Earth System Sciences, 15, 1–21.

    Article  Google Scholar 

  24. Goutal, N., & Maurel, F. (2002). A finite volume solver for 1D shallow water equations applied in an actual river. International Journal for Numerical Methods in Fluids, 38(2), 1–19.

    Article  MATH  Google Scholar 

  25. Buis, S., Piacentini, A., & Déclat, D. (2006). PALM: A computational framework for assembling high performance computing applications. Concurrency and Computation: Practice and Experience, 18(2), 247–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Habert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Habert, J. et al. (2014). Estimation of Lateral Inflows Using Data Assimilation in the Context of Real-Time Flood Forecasting for the Marne Catchment in France. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds) Advances in Hydroinformatics. Springer Hydrogeology. Springer, Singapore. https://doi.org/10.1007/978-981-4451-42-0_8

Download citation

Publish with us

Policies and ethics