Skip to main content

FullSWOF: A Software for Overland Flow Simulation

  • Chapter
  • First Online:
Advances in Hydroinformatics

Abstract

Le ruissellement sur les terres agricoles peut avoir des effets indésirables tels que l’érosion des sols, les inondations et le transport de polluants. Afin de mieux comprendre ce phénomène et d’en limiter les conséquences, nous avons développé un code à l’aide de méthodes numériques récentes : FullSWOF (Full Shallow Water equations for Overland Flow), un code orienté objet écrit en C++. Il est libre et peut être téléchargé à partir de http://www.univ-orleans.fr/mapmo/soft/FullSWOF/. Le modèle résout le système de Saint–Venant. Les difficultés numériques viennent des nombreuses transitions sec/mouillé et de la topographie très variable rencontrée sur le terrain. Le code intègre le ruissellement, les précipitations, l’infiltration (modèle de Green-Ampt), la friction (les lois de Darcy-Weisbach et de Manning). Nous présentons d’abord la méthode numérique pour la résolution des équations en eaux peu profondes integrée dans FullSWOF_2D (la version en deux dimensions). Cette méthode repose sur le schéma de reconstruction hydrostatique, couplée à un traitement semi-implite du terme de friction. FullSWOF_2D a déjà été validé à l’aide des solutions analytiques de la bibliothèque SWASHES. FullSWOF_2D est exécuté sur des données de terrain acquises sur une parcelle située à Thiès (Sénégal). Les résultats de la simulation sont comparés avec les données mesurées. Ce banc d’essai expérimental permet de démontrer les capacités de FullSWOF à simuler l’écoulement de surface. FullSWOF pourrait également être utilisé pour d’autres problèmes environnementaux, tels que les inondations fluviales et les ruptures de barrage.

Abstract

Overland flow on agricultural fields may have some undesirable effects such as soil erosion, flood, and pollutant transport. To better understand this phenomenon and limit its consequences, we developed a code using state-of-the-art numerical methods: Full Shallow Water equations for Overland Flow (FullSWOF ), an object-oriented code written in C++. It has been made open-source and can be downloaded from http://www.univ-orleans.fr/mapmo/soft/FullSWOF/. The model is based on the classical system of shallow water (SW) (or Saint–Venant system). Numerical difficulties come from the numerous dry/wet transitions and the highly variable topography encountered inside a field. The code includes run-on and rainfall inputs, infiltration (modified Green-Ampt equation), and friction (Darcy-Weisbach and Manning formulas). First, we present the numerical method for the resolution of the SW equations integrated in FullSWOF_2D (the two-dimensional version). This method is based on hydrostatic reconstruction scheme, coupled with a semi-implicit friction term treatment. FullSWOF_2D has been previously validated using analytical solutions from the Shallow Water Analytic Solutions for Hydraulic and Environmental Studies library (SWASHES). FullSWOF_2D is run on a real topography measured on a runoff plot located in Thies (Senegal). Simulation results are compared with measured data. This experimental benchmark demonstrates the capabilities of FullSWOF to simulate adequately overland flow. FullSWOF could also be used for other environmental issues, such as river floods and dam breaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES AND CITATIONS

  1. Esteves, M., Faucher, X., Galle, S., & Vauclin, M. (2000). Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values. Journal of Hydrology, 228, 265–282.

    Article  Google Scholar 

  2. Fiedler, F. R., & Ramirez, J. A. (2000). A numerical method for simulating discontinuous shallow flow over an infiltrating surface. International Journal of Numerical Methods in Fluids, 32, 219–240.

    Article  MATH  Google Scholar 

  3. Zhang, W., & Cundy, T. W. (1989). Modeling of two-dimensional overland flow. Water Resources Research, 25, 2019–2035.

    Article  Google Scholar 

  4. de Saint-Venant, A. J.-C. (1871). Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. Comptes Rendus de l’Académie des Sciences, 73, 147–154.

    MATH  Google Scholar 

  5. Greenberg, J. M., & LeRoux, A.-Y. (1996). A well-balanced scheme for the numerical processing of source terms in hyperbolic equation. SIAM Journal on Numerical Analysis, 33, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  6. Rousseau, M., Cerdan, O., Delestre, O., Dupros, F., James, F., & Cordier, S. (submitted). Overland flow modelling with Shallow Water Equation using a well balanced numerical scheme: Adding efficiency or just more complexity ?, Available on http://hal.archives-ouvertes.fr/hal-00664535.

  7. Novak, P., Guinot, V., Jeffrey, A., & Reeve, D.E. (2010). Hydraulic modelling—an Introduction. Spoon Press.

    Google Scholar 

  8. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., & Perthame, B. (2004). A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. Journal on Scientific Computing, 25(6), 2050–2065.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouchut, F. (2004). Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics: Birkhauser.

    Book  MATH  Google Scholar 

  10. Tatard, L., Planchon, O., Wainwright, J., Nord, G., Favis-Mortlock, D., Silvera, N., et al. (2008). Measurement and modelling of high-resolution flow-velocity data under simulated rainfall on a low-slope sandy soil. Journal of Hydrology, 348, 1–12.

    Article  Google Scholar 

  11. Green, W. H., & Ampt, G. A. (1911). Studies on soil physics. The Journal of Agricultural Science, 4, 1–24.

    Article  Google Scholar 

  12. Rousseau, M. (2008). Modélisation des écoulements à surface libre : étude du ruissellement des eaux de pluie. Master thesis Université de Nantes, available on http://dumas.ccsd.cnrs.fr/dumas-00494243/fr/.

  13. Delestre, O. (2010). Simulation du ruissellement d’eau de pluie sur des surfaces agricoles. (PhD thesis, Université d’Orléans, 2010). Available on http://tel.archives-ouvertes.fr/INSMI/tel-00531377/fr.

  14. Delestre, O. (2008). Ecriture d’un code C++ pour la simulation en hydrologie. (Master thesis Université d’Orléans, 2008). Available on http://dumas.ccsd.cnrs.fr/dumas-00446163/fr/.

  15. Delestre, O., Cordier, S., Darboux, F. & James, F. (2012). A limitation of the hydrostatic reconstruction technique for Shallow Water equations, C. R. Acad. Sci. Paris,Ser. I, http://dx.doi.org/10.1016/j.crma.2012.08.004.

  16. Bristeau, M.-O., & Coussin, B. (2001). Boundary conditions for the shallow water equations solved by kinetic schemes. Inria report RR-4282.

    Google Scholar 

  17. van Leer, B. (1979). Towards the ultimate conservative difference scheme. V. A seond-order sequel to Godunov’s method. Journal of Computational Physics, 32(1), 101–136.

    Article  Google Scholar 

  18. Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., Vo, T.N.T., James, F., & Cordier, S. (2013). SWASHES: a compilation of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies. International Journal of Numerical Methods in Fluids, 72(3), 269–300. doi: 10.1002/fld.3741.

    Google Scholar 

  19. Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., James, F., & Cordier, S. (2014). SWASHES: a library for benchmarking in hydraulics/SWASHES : Une bibliothèque de bancs d’essai en hydraulique. To be published in Proceedings of SimHydro 2012, Polytech’Nice Sophia, Sophia-Antipolis: France, 2012. Advances in Hydroinformatics—SimHydro 2012: Springer. doi: 10.1007/978-981-4451-42-0_20.

  20. Planchon, O., Silvera, N., Gimenez, R., Favis-Mortlock, D., Wainwright, J., Le Bissonnais, Y., et al. (2005). An automated salt-tracing gauge for flow-velocity measurement. Earth Surface Processes and Landforms, 30, 833–844.

    Article  Google Scholar 

  21. Rousseau, M., Cerdan, O., Ern, A., Le Maître, O., & Sochala, P. (2012). A study of overland flow with uncertain infiltration using stochastic tools. Advances in Water Resources, 38, 1–12.

    Article  Google Scholar 

  22. Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1, 318–333.

    Article  MATH  Google Scholar 

Download references

Acknowlegments

This work was partially supported by ANR grant “METHODE” #ANR-07-BLAN-0232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Delestre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Delestre, O. et al. (2014). FullSWOF: A Software for Overland Flow Simulation. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds) Advances in Hydroinformatics. Springer Hydrogeology. Springer, Singapore. https://doi.org/10.1007/978-981-4451-42-0_19

Download citation

Publish with us

Policies and ethics