Skip to main content

Green Organocatalysis

  • Chapter
  • First Online:
Green Organic Reactions

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 599 Accesses

Abstract

Green organocatalysis refers to a form of catalysis where the reaction is catalyzed by organic molecules having low molecular weight. In recent years, considering the environmental hazards, the chemical industries and pharmaceutical companies have started to take necessary step for green chemistry. Metal-free catalyst, easy availability, lack of sensitivity to oxygen and moisture, low cost and low toxicity are the fundamental features of organocatalysts. In this chapter, a brief description of organocatalysts has been demonstrated in light of the aspects of green chemistry. Firstly, a descriptive introduction on the field is explained considering the sustainable nature of catalyst. Organocatalysts are categorized according to their participation in the reactions. Several examples on green organocatalysts with schematic diagrams will make a clear conception on this topic. This chapter brings many outstanding research works together and displays the vital role of organocatalysts in the field of green chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lancaster M (2002) Green Chemistry an introductory text. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  2. Anastas PT, Warner JC (1998) Green Chemistry: theory and practice. Oxford University Press, NewYork, USA

    Google Scholar 

  3. Clark JH (2001) Catalysis for green chemistry. Pure Appl Chem 73:103–111

    Article  CAS  Google Scholar 

  4. Clark JH, Rhodes CN (2000) Clean synthesis using porous inorganic solid catalysts. RSC Clean Technology Monographs, Cambridge, UK

    Google Scholar 

  5. Dakin HD (1909) The catalytic action of amino-acids, peptide and proteins in effecting certain syntheses. J Biol Chem 7:4

    Article  Google Scholar 

  6. Enders D, Grondal C, Hüttl MRM (2007) Asymmetric organocatalytic domino reactions. Angew Chem Int Ed 46:1570–1581

    Article  CAS  Google Scholar 

  7. Jv L (1860) Ueber die Bildung des Oxamids aus Cyan. Annalen-Der-Chemie Und Pharmacie 113:246–247

    Article  Google Scholar 

  8. Vavon MM, Peignier P (1929) L’application des alcalo¨ıdes dans la synth`ese organique. Bulletin de la Soci´et´e Chimique de France 45:293

    Google Scholar 

  9. Wegler R (1932) Uber die mitverschiedenerReaktionsgeschwindigkeiterfolgende Veresterung der optischen Antipoden eines Racemates durch opt. akt Katalysatoren. Justus Liebigs Annalen Der Chemie 498:62–73

    Article  CAS  Google Scholar 

  10. Pizzarello S, Weber AL (2004) Prebiotic amino acids as asymmetric catalysts. Science 303:1151

    Article  CAS  Google Scholar 

  11. Bredig G, Fiske PS (1912) BiochemischeZeitschrift 46:7

    Google Scholar 

  12. Wynberg H (1986) Asymmetric catalysis by alkaloids. Top Stereochem 16:87–12

    CAS  Google Scholar 

  13. Wynberg H (1985) Catalytic asymmetric synthesis of chiral 4substituted 2-oxetanones. J Org Chem 50:1977–2197

    Article  CAS  Google Scholar 

  14. List B, Lerner RA, Barbas CF (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am ChemSoc 122:2395–2396

    Article  CAS  Google Scholar 

  15. Bui T, Barbas CF (2000) A proline-catalyzed asymmetric Robinsonannulation reaction. Tetrahedron Lett 41:6951–6954

    Article  CAS  Google Scholar 

  16. Hajos ZG, Parrish DR (1974) Synthesis and conversion of 2-methyl-2-(3-oxobutyl)-1,3-cyclopentanedione to the isomeric racemic ketols of the [3.2.1]bicyclooctane and of the perhydroindane series. J Org Chem 39:1615–1621

    Article  CAS  Google Scholar 

  17. Bredig G, Fiske PS (1912) Durch Katalysatoren bewirkte asymmetrische Synthese. Biochem Z 46:7–23

    Google Scholar 

  18. Shu L, Shi Y (2000) An efficient ketone-catalyzed epoxidation using hydrogen peroxide as oxidant. J Org Chem 65:8807–8810

    Article  CAS  Google Scholar 

  19. Corey EJ, Xu F, Noe MC (1997) A rational approach to catalytic enantioselective enolate alkylation using a structurally rigidified and defined chiral quaternary ammoniumsalt under phase transfer conditions. J Am Chem Soc 119:12414–12415

    Article  CAS  Google Scholar 

  20. Sellergren B, Karmalkar RN, Shea KJ (2000) Enantioselective ester hydrolysis catalyzed by imprinted polymers. J Org Chem 65:4009–4027

    Article  CAS  Google Scholar 

  21. Ogstone AG (1958) Nature 181:1462–1465

    Article  Google Scholar 

  22. Yamada S-I, Otani G (1969) Asymmetric synthesis with amino acid II asymmetric synthesis of optically active 4,4-disubstituted-cyclohexenone. Tetrahedron Lett 10:4237–4240

    Article  Google Scholar 

  23. Hajos ZG, Parrish DR (1971) United States Patent US, 3975442

    Google Scholar 

  24. Hajos ZG, Parrish DR (1974) Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J Org Chem 39:1615–1621

    Article  CAS  Google Scholar 

  25. Hajos ZG, Parrish DR (1971) German Patent DE, 2102623

    Google Scholar 

  26. Hajos ZG, Parrish DR (1971) United States Patent, US, 3975442

    Google Scholar 

  27. Vignola N, List B (2004) Catalytic asymmetric intramolecular α-alkylation of aldehydes. J Am Chem Soc 126:450–545

    Article  CAS  Google Scholar 

  28. List B (2000) The direct catalytic asymmetric three-component Mannich reaction. J Am Chem Soc 122:9336–9337

    Article  CAS  Google Scholar 

  29. Alexakis A, Andrey O (2002) Diamine-catalyzed asymmetric Michael additions of aldehydes and ketones to nitrostyrene. Org Lett 4:3611–3614

    Article  CAS  Google Scholar 

  30. Ramachary B, Anebouselvy K, Chowdari Naidu S et al (2004) Direct organocatalytic asymmetric heterodomino reactions: the knoevenagel/diels alder/epimerization sequence for the highly diastereoselective synthesis of symmetrical and nonsymmetrical synthons of benzoannelated centropolyquinanes. J Org Chem 69:5839–6584

    Article  CAS  Google Scholar 

  31. Eder U, Sauer G, Wiechert R (1971) Hajos-Parrish-Eder-Sauer Wiechert reaction. Angew Chem Int Ed 10:496–497

    Article  CAS  Google Scholar 

  32. Alexakis A, Andrey O (2002) Diamine-catalyzed asymmetric Michael additions of aldehydes and ketones to nitrostyren. Org Lett 4:3611–3614

    Article  CAS  Google Scholar 

  33. List B, Lerner RA, Barbas CF (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc 122:2395–2396

    Article  CAS  Google Scholar 

  34. Aznar F, Garca A-B, Cabal M-P (2006) Proline-catalyzed imino-Diels–Alder reactions: synthesis of meso-2,6-diaryl-4-piperidones. Adv Synth Catal 348:2443–2448

    Article  CAS  Google Scholar 

  35. Calderon F, Fernandez R, Sanchez F et al (2005) Asymmetric aldol reaction using immobilized proline on mesoporous support. Adv Synth Catal 347:1395–1403

    Google Scholar 

  36. Bortolini O, Cavazzini A, Giovannini PP et al (2013) A combined kinetic and thermodynamic approach for the interpretation of continuous-flow heterogeneous catalytic processes. Chem Eur J 19:7802–7808

    Article  CAS  Google Scholar 

  37. Moore JL, Rovis T (2010) Lewis base catalysts 6: carbene catalysts. Top Curr Chem 291:1–51

    Google Scholar 

  38. Xu LW et al (2005) Efficient and mild benzoin condensation reaction catalyzed by simple 1-N-alkyl-3-methylimidazolium salts. Tetrahedron Lett 46:5317–5320

    Article  CAS  Google Scholar 

  39. Iwamoto K et al (2006) Benzoin reaction in water as an aqueous medium catalyzed by benzimidazolium salt. Tetrahedron Lett 47:7175–7177

    Article  CAS  Google Scholar 

  40. Jin MY, Kim SM, Mao H et al (2014) Chemoselective and repetitive intermolecular cross-acyloin condensation reactions between a variety of aromatic and aliphatic aldehydes using a robust N-heterocyclic carbene catalyst. Org Biomol Chem 12:1547–2155

    Article  CAS  Google Scholar 

  41. Thai K, Langdon SM, Bilodeau F et al (2013) Highly chemo- and enantioselective cross-benzoin reaction of aliphatic aldehydes and α-ketoesters. Org Lett 15:2214–2217

    Article  CAS  Google Scholar 

  42. Nair V, Varghese V, Paul RR et al (2010) NHC catalyzed transformation of aromatic aldehydes to acids by carbon dioxide: an unexpected reaction. Org. Lett 12:2653–2655

    Article  CAS  Google Scholar 

  43. Sakakura A, Kawajiri K, Ohkubo T et al (2007) Widely useful DMAP-catalyzed esterification under auxiliary base- and solvent-free conditions. J Am Chem Soc 129:14775–21477

    Article  CAS  Google Scholar 

  44. Ranarsson U, Grehn L (1998) Novel amine Chemistry based on DMAP-catalyzed acylation. Acc Chem Res 31:494–501

    Article  Google Scholar 

  45. Xu S, Held I, Kempf B, Mayr H et al (2005) The DMAP-catalyzed acetylation of alcohols-a mechanistic study (DMAP = 4-(dimethylamino)-pyridine). Chem Eur J 11:4751–4757

    Article  CAS  Google Scholar 

  46. Scriven EFV (1983) 4-Dialkylaminopyridines: super acylation and alkylation catalysts. Chem Soc Rev 12:129–161

    Article  CAS  Google Scholar 

  47. Berry DJ, Charles VD, Stephanie SM et al (2001) Catalysis by 4-dialkylaminopyridines. Arkivoc 5:201–226

    Article  Google Scholar 

  48. Steglich W, Hoefle (1969) G N, N-dimethyl-4-pyridinamine, a very effective acylation catalyst. Angew Chem Int Ed 8:981–981

    Article  CAS  Google Scholar 

  49. Held I, Von den Hoff P, Stephenson DS et al (2008) Domino catalysis in the direct conversion of carboxylic acids to esters. Adv Synth Cat 11:1891–1900

    Article  CAS  Google Scholar 

  50. Hoefle G, Steglich W et al (1972) 4-Dialkylaminopyridines as acylation catalysts; III1 Acylation of Sterically Hindered Alcohols. Synthesis 11:619–621

    Article  Google Scholar 

  51. Banwell MG et al (1995) Trifluoromethanesulfonic anhydride–4-(N, N-dimethylamino)pyridine as a reagent combination for effecting Bischler-Napieraiski cyclisation under mild conditions: application to total syntheses of the Amaryllidaceae alkaloids N-methylcrinasiadine, anhydrolycorinone, hippadine and oxoassoanine. J Chem Soc Chem Commun 24:2551–2553

    Article  Google Scholar 

  52. Nicolaou KC, Snyder SA, Montagnon T et al (2002) The Diels-Alder reaction in total synthesis. Angew Chem Int Ed 41:1668–1698

    Article  CAS  Google Scholar 

  53. Gaunt MJ, Johansson CCC, McNally A et al (2007) Enantioselective organocatalysis. Drug Discovery Today 12:8–27

    Article  CAS  Google Scholar 

  54. Wende RC, Schreiner PR (2012) Evolution of asymmetric organocatalysis: multi- and retrocatalysis. Green Chem 14:1821–2184

    Article  CAS  Google Scholar 

  55. Mike K, Schreiner PR (2009) (Thio)ureaOrganocatalysts. In: Pihko PM (ed) Hydrogen bonding in organic synthesis. Wiely, New York.

    Google Scholar 

  56. Wittkopp A, Schreiner PR (2000) The Chemistry of Dienes and Polyenes. In: Rappoport Z (ed) Diels-Alder reactions in water and in hydrogen-bonding environments. Wiley Inc, New York

    Google Scholar 

  57. Schreiner PR (2003) Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem Soc Rev 32:289–296

    Article  CAS  Google Scholar 

  58. Taylor MS, Jacobsen EN (2006) Asymmetric catalysis by chiral hydrogen-bond donors. Angew Chem Intd Ed 45:1520–1543

    Article  CAS  Google Scholar 

  59. Curran DP, Kuo LH (1995) Acceleration of a dipolar Claisen rearrangement by Hydrogen bonding to a soluble diaryl^urea. Tetrahedron Lett 36:6647–6650

    CAS  Google Scholar 

  60. (a) Liu K, Cui HF, Nie J et al (2007) Highly enantioselective michael addition of aromatic ketones to nitroolefins promoted by chiral bifunctional primary amine-thiourea catalysts based on saccharide. Org Lett 9:923–925 (b) Okino T, Hoashi Y, Takemoto Y (2003) Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J Am Chem Soc 125:12672–12673

    Google Scholar 

  61. Lee Y, Klausen RS, Jacobsen EN (2011) Thiourea-catalyzed enantioselective iso-pictet–spengler reactions. Org Lett 13:5564–5567

    Article  CAS  Google Scholar 

  62. Herrera RP, Sgarzani V, Bernardi L et al (2005) Catalytic enantioselective Friedel-crafts alkylation of indoles with nitroalkenes by using a simple thiourea organocatalyst. Angew Chem Int Ed 44:6576–6657

    Article  CAS  Google Scholar 

  63. Sohtome Y, Takemura N, Takagi R et al (2008) Thiourea-catalyzed Morita–Baylis–Hillman reaction. Tetrahedron 64:9423–9942

    Article  CAS  Google Scholar 

  64. Wittkopp A, Schreiner PR (2003) Metal-free, noncovalent catalysis of Diels-Alder reactions by neutral hydrogen bond donors in organic solvents and in water. Chem Eur J 9:407–414

    Article  CAS  Google Scholar 

  65. Yoon TP, Jacobsen EN (2005) Highly enantioselective thiourea-catalyzed nitro-Mannich reaction. Angew Chem Int Ed 44:466–468

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranab Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basak, P., Ghosh, P. (2021). Green Organocatalysis. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_9

Download citation

Publish with us

Policies and ethics