Skip to main content

Green in Pharmaceutical Chemistry

  • Chapter
  • First Online:
Green Organic Reactions

Abstract

Green chemistry is an innovative choice towards the design of processes that would obliterate the utilization of noxious materials. Green chemistry is based on its 12 principles (prevent waste, maximize atom economy, design less hazardous chemical synthesis, design safer chemicals and products, use safer solvents and reaction conditions and increase energy efficiency, etc.). Pharmaceutical chemistry is the most vital area of the chemical industry. Following the green chemistry principles, many unique achievements were acquired by the pharmaceutical industry in recent years. The use of nanochemistry in pharmaceuticals has led to their application in various drug synthesis and drug delivery. Enzymatic mechanisms, use of greener solvents like water and ionic liquids, microwave reactions, etc., are some of the greener methodologies employed in the pharmaceutical world. Less toxicity, low side effects, least waste production and minimal labour are the major attraction of green chemistry in pharmaceutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Constable DJC, Jinenez-Gonzalez C, Henderson RK (2007) Perspective on solvent use in the pharmaceutical industry. Org Proc Res Devel 11(1):133–137

    Article  CAS  Google Scholar 

  2. Slater CS, Savefski M (2007) A method to characterize the greeness of solvents used in the pharmaceutical manufacturing. Environ Sci Heath a Environ Sci Eng Toxic Hazard Subst Control 42(11):1595–1605

    Article  CAS  Google Scholar 

  3. Tucker JL (2006) Green Chemistry, a Pharmaceutical Perspective. Organ Process Res Develop 10(2):315–319

    Article  CAS  Google Scholar 

  4. Tauro SJ, Gawad JB (2013) Green Chemistry: A Boon to Pharmaceutical Synthesis. Journal of Scientific Research 2(7):67–69

    Google Scholar 

  5. Jiménez-González C, Constable DJC, Ponder CS (2012) Evaluating the “Greenness” of chemical processes and products in the pharmaceutical industry—a green metrics primer. Chem Soc Rev 41:1485–1498

    Article  Google Scholar 

  6. Kumar S, Pandita LVD (2015) Green synthesis of therapeutic nanoparticles: an expanding horizon. Nanomedicine 10(15):2451–2471

    Google Scholar 

  7. Zhu J-J, Wang C, Liu K et al (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21:12034–12040

    Article  CAS  Google Scholar 

  8. Tian J, Xu S, Deng H et al (2017) Fabrication of Nanaki SG, Pantopoulos K, Bikiaris DN (2011) Synthesis of biocompatible poly(ε-caprolactone)-block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles. Int J Nanomedicine 6:2981–2995

    Google Scholar 

  9. Venkatpurwar V, Shiras A, Pokharkar V (2011) Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: In vitro cytotoxicity study. Int J Pharm 409(1–2):314–320

    Article  CAS  Google Scholar 

  10. Ma N, Zhang B, Liu J et al (2015) Green fabricated reduced graphene oxide: evaluation of its application as nano-carrier for pH-sensitive drug delivery. Int J Pharm. 496(2):984–992

    Article  CAS  Google Scholar 

  11. Lee AV, Oesterreich S, Davidson NE (2015) MCF-7 Cells—Changing the Course of Breast Cancer Research and Care for 45 Years. J Natl Cancer Inst. 107(7):djv073.

    Google Scholar 

  12. Foster KA et al (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res. 243(2):359–366

    Article  CAS  Google Scholar 

  13. Palai PK, Mondal A, Chakraborti CK et al (2019) Doxorubicin Loaded Green Synthesized Nanoceria Decorated Functionalized Graphene Nanocomposite for Cancer-Specific Drug Release. J Clust Sci. 30(6):1565–1582

    Article  CAS  Google Scholar 

  14. Jahangirian H, Lemraski EG, Webster TJ et al (2017) A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine 12:2957–2978

    Article  CAS  Google Scholar 

  15. Lam PL, Wong WY, Bian Z et al (2017) Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine 12(4):357–385

    Article  CAS  Google Scholar 

  16. White MA, Johnson JA, Koberstein JT, Turro NJ (2006) Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc 128(35):11356–11357

    Article  CAS  Google Scholar 

  17. Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808

    Article  CAS  Google Scholar 

  18. Li J, Wu S, Wu C et al (2016) Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery. Nanoscale 8(16):8600–8606

    Article  CAS  Google Scholar 

  19. Li X, Gong Y, Zhou X et al (2016) Facile synthesis of soybean phospholipid-encapsulated MoS2 nanosheets for efficient in vitro and in vivo photothermal regression of breast tumor. Int J Nanomedicine 11:1819–1833

    CAS  Google Scholar 

  20. Zhao MD, Cheng JL, Yan JJ et al (2016) Hyaluronic acid reagent functional chitosan-PEI conjugate with AQP2-siRNA suppressed endometriotic lesion formation. Int J Nanomedicine 11:1323–1336

    Article  CAS  Google Scholar 

  21. Das D, Patra P, Ghosh P et al (2016) Dextrin and poly(lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polym Chem 7(17):2965–2975

    Article  CAS  Google Scholar 

  22. Nanaki SG, Pantopoulos K, Bikiaris DN (2011) Synthesis of biocompatible poly(ε-caprolactone)-block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles. Int J Nanomedicine 6:2981–2995

    CAS  Google Scholar 

  23. Zhu HY, Zhang SY, Ling Y et al (2015) pH-responsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery. J Control Release 220:529–544

    Article  CAS  Google Scholar 

  24. Huang N, Wang H, Zhao J et al (2010) Single-wall CNTs assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Laser Surg Med 42(9):638–648

    Article  Google Scholar 

  25. Liu XW, Tao HQ, Yang K et al (2011) Optimization of surface chemistry on single-walled CNTs for in vivo photothermal ablation of tumors. Biomaterials 32(1):144–151

    Article  CAS  Google Scholar 

  26. Jeyamohan P, Hasumura T, Nagaoka Y et al (2013) Accelerated killing of cancer cells using a multifunctional single-walled CNT-based system for targeted drug delivery in combination with photothermal therapy. Int J Nanomedicine 8(1):2653–2667

    Google Scholar 

  27. Sripriya J, Anandhakumar S, Achiraman S (2013) Laser receptive polyelectrolyte thin films doped with biosynthesized silver nanoparticles for antibacterial coatings and drug delivery applications. Int J Pharm 457(1):206–213

    Article  CAS  Google Scholar 

  28. Agostoni V, Horcajada P, Couvreur P et al (2013) “Green” fluorine-free mesoporous iron(III) trimesate nanoparticles for drug delivery. Green Materials 1(4):209–217

    Article  CAS  Google Scholar 

  29. Kang Y, Park W. (2012) Study on Synthesis Chitosan Oligomer Stabilized Silver Nanoparticles Using Green Chemistry and Their Burn Wound Healing Effects. MRS Proceedings, 1453, Mrss12–1453-aaa05–08. doi:https://doi.org/10.1557/opl.2012.1341.

  30. Steven CR, Busby GA, Grant MH (2014) Bioinspired silica as drug delivery systems and their biocompatibility. J Mater Chem B 2(31):5028–5042

    Article  CAS  Google Scholar 

  31. Gurunathan S, Han J, Park JH et al (2014) A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett 9(1):248

    Article  CAS  Google Scholar 

  32. Thiruvengadam M, Chung I, Gomathi T et al (2019) Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles. Bioproc Biosyst Eng 42(11):1769–1777

    Article  CAS  Google Scholar 

  33. Dai L, Liu K, Si C et al (2016) Ginsenoside nanoparticle: A new green drug delivery system. J Mater Chem B 4(3):529–528

    Article  CAS  Google Scholar 

  34. Villamizar-Sarmiento MG, Molina-Soto EF, Guerrero J et al (2019) A New Methodology to Create Polymeric Nanocarriers Containing Hydrophilic Low Molecular-Weight Drugs: A Green Strategy Providing a Very High Drug Loading. Mol Pharm 16(7):2892–2901

    Article  CAS  Google Scholar 

  35. Pavliňáková V, Fohlerová Z, Pavliňák D et al (2018) Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Mater Sci Eng, C 91:94–102

    Article  CAS  Google Scholar 

  36. Bhat AH, Khan I, Usmani MA et al (2019) Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose. Int J Biol Macromol. 129:750–777

    Article  CAS  Google Scholar 

  37. Chu C, Su M, Zhu J et al (2019) Metal-Organic Framework Nanoparticle-Based Biomineralization: A New Strategy toward Cancer Treatment. Theranostics 9(11):3134–3149

    Article  CAS  Google Scholar 

  38. Sigel A, Sigel H, Sigel RKO, (eds) (2008). Biomineralization: From Nature to Application. Metal Ions in Life Sciences. 4. Wiley VCH Weinheim Germany.

    Google Scholar 

  39. Schnell B, Faber K, Kroutil W (2003) Enzymatic racemisation and its application to synthetic biotransformations. Adv Synth Catal 345:653–666

    Article  CAS  Google Scholar 

  40. Dembitsky V (2003) Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases. Tetrahedron 59(26):4701–4720

    Article  CAS  Google Scholar 

  41. Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 14:2659–2681

    Article  CAS  Google Scholar 

  42. Thiel F (2000) Enhancement of selectivity and reactivity of lipases by additives. Tetrahedron 56(19):S2905-2919

    Article  Google Scholar 

  43. Ni Y, Xu J-H (2012) Biocatalytic ketone reduction: A green and efficient access to enantiopure alcohols. Biotechnol Adv 30(6):1279–1288

    Article  CAS  Google Scholar 

  44. Kourist R, Bornscheuer UT (2011) Biocatalytic synthesis of optically active tertiary alcohols. Appl Microbiol Biotechnol 91(3):505–517

    Article  CAS  Google Scholar 

  45. Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26(6):321–327

    Article  CAS  Google Scholar 

  46. Zhang X, King-Smith E, Renata H (2018) Total Synthesis of Tambromycin by Combining Chemocatalytic and Biocatalytic C−H Functionalization. Angew Chem Int Ed 57(18):5037–5041

    Article  CAS  Google Scholar 

  47. Müller M (2005) Chemoenzymatic synthesis of building blocks for statin side chains. Angew Chem Int Ed 44(3):362–365

    Article  CAS  Google Scholar 

  48. Ma SK, Gruber J, Davis C et al (2010) A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem. 12:81–86

    Article  CAS  Google Scholar 

  49. Byford MF, Baldwin JE, Shiau CY, Schofield CJ (1997) The mechanism of ACV synthetase. Chem Rev 97(7):2631–2639

    Article  Google Scholar 

  50. Yeh WK, Queener SW (1990) Potential industrial use of cephalosporin biosynthetic enzymes and genes. Ann New York Acad Sci 613:128–141

    Article  CAS  Google Scholar 

  51. Ran N, Rui E, Liu J et al (2009) Chemoenzymatic Synthesis of Small Molecule Human Therapeutics. Curr Pharm Des 15:134–152

    Article  CAS  Google Scholar 

  52. Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT (2000) Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407:215–218

    Article  CAS  Google Scholar 

  53. Patel RN, Banerjee A, Ko RY, Howell JM, Li WS, Comezoglu FT et al (1994) Enzymic preparation of (3R-cis)-3-(acetyloxy)-4-phenyl-2-azetidinone: a taxol side-chain synthon. Biotechnol Appl Biochem 20:23–33

    CAS  Google Scholar 

  54. Martinez CA, Hu S, Dumond Y, Tao J, Kelleher P, Tully L (2008) Development of a chemoenzymatic manufacturing process for pregabalin. Org Proc Res Dev 12:392–398

    Article  CAS  Google Scholar 

  55. Huang C, Pérez CD, Rádis-Baptista G et al (2018) The Holo-Transcriptome of the Zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa): A Plentiful Source of Enzymes for Potential Application in Green Chemistry. Industrial and Pharmaceutical Biotechnology. Mar Drugs 16(6):207

    Google Scholar 

  56. Cabri W (2009) Catalysis: The pharmaceutical perspective. Catal Today 140(1–2):2–10

    Article  CAS  Google Scholar 

  57. Wu Q, Lin X-F, Shen Z et al (2014) Enzymatic enantioselective aldol reactions of isatin derivatives with cyclic ketones under solvent-free conditions. Biochimie 101:156–160

    Article  CAS  Google Scholar 

  58. Huang J, - Y, Li S – J, Wang Y – G, (2006) TEMPO-linked metalloporphyrins as efficient catalysts for selective oxidation of alcohols and sulphide. Tetrahedron Lett 47:5637–5640

    Article  CAS  Google Scholar 

  59. Vivancos Á, Beller M, Albrecht M (2018) NHC-based Iridium Catalysts for Hydrogenation and Dehydrogenation of N-Heteroarenes in Water under Mild Conditions. ACS Catal 8:17–21

    Article  CAS  Google Scholar 

  60. Zhang W, Wu L, Zhou K, Guan Q et al (2020) Activated carbon/Brønsted acid-promoted aerobic benzylic oxidation under “on-water” condition: Green and efficient synthesis of 3-benzoylquinoxalinones as potent tubulin inhibitors. Eur J Med Chem 186:111894

    Article  CAS  Google Scholar 

  61. Ceborska M, Zimnicka M, Pietrzak M et al (2012) Structural diversity in native cyclodextrins/folic acid complexes – from [2]-rotaxane to exclusion compound. Org Biomol Chem 10(27):5186–5188

    Article  CAS  Google Scholar 

  62. Davenport AP, Hyndman KA, Dhaun N et al (2016) Endothelin. Pharmacol Rev 68(2):357–418

    Article  Google Scholar 

  63. Barnes DM, Ji J, Fickes MG et al (2002) Development of a Catalytic Enantioselective Conjugate Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes for the Synthesis of Endothelin-A Antagonist ABT-546. Scope, Mechanism, and Further Application to the Synthesis of the Antidepressant Rolipram. J Am Chem Soc 124(44):13097–13105.

    Google Scholar 

  64. Garcia A, Leonardi D, Lamas MC (2016) Promising applications in drug delivery systems of a novel β-cyclodextrin derivative obtained by green synthesis. Bioorg Med Chem Lett 26(2):602–608

    Article  CAS  Google Scholar 

  65. Shaabani A, Soleimani E, Maleki A (2006) Ionic liquid promoted one-pot synthesis of 3- aminoimidazo[1,2-a]pyridines. Tetrahedron Lett 47:3031–3034

    Article  CAS  Google Scholar 

  66. Zaidlewicz M, Cytarska J, Dzielendziak A et al (2004) Synthesis of boronated phenylalanine analogues with a quaternary center for boron neutron capture therapy. Arkivoc 3:11–21

    Google Scholar 

  67. Kurata A, Kitamura Y, Irie S et al (2010) Enzymatic synthesis of caffeic acid phenethyl ester analogues in ionic liquid. J Biotechnol 148(2–3):133–138

    Article  CAS  Google Scholar 

  68. Siódmiak T, Marszall MP, Proszowska A (2012) Ionic Liquids: A New Strategy in Pharmaceutical Synthesis. Mini-Rev Org Chem 9(6):203–208

    Article  Google Scholar 

  69. Zhang X, Li X, Li D et al (2009) Ionic liquid mediated and promoted eco-friendly preparation of thiazalidinone and pyrimidine nucleoside-thiazolidinone hybrids and their antiparasitic activities. Bioorg Med Chem Lett 19(22):6280–6283

    Article  CAS  Google Scholar 

  70. Fan X, Feng D, Qu Y et al (2010) Practical and efficient synthesis of pyrano[3,2-c]pyridine, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents. Bioorg Med Chem Lett 20(3):809–813

    Article  CAS  Google Scholar 

  71. Kumar V, Parmar VS, Malhotra SV (2011) Ionic Liquids: Neoteric Solvents for Nucleoside Chemistry. Curr Org Synth 8:777–786

    CAS  Google Scholar 

  72. Kumar V, Malhotra SV (2008) Synthesis of nucleoside-based antiviral drugs in ionic liquids. Bioorg Med Chem Lett 18:5640–5642

    Article  CAS  Google Scholar 

  73. Gioia MLD, Cassano R, Costanzo P et al (2019) Green synthesis of privileged benzimidazole scaffolds using active deep eutectic solvent. Molecules 24(16):2885

    Article  CAS  Google Scholar 

  74. Carta F, Aggarwal M, Maresca A et al (2012) Dithiocarbamates strongly inhibit carbonic anhydrases and show antiglaucoma action in vivo. J Med Chem 55:1721–1730

    Article  CAS  Google Scholar 

  75. Turan-Zitouni G, Ozdemir A, Guven K (2005) Synthesis of some 1[(N, N-disubstitutedthio carbamoylthio)acetyl]-3-(2-thienyl)-5-aryl-2-prazoline derivatives and investigation of their antibacterial and antifungal activities. Arch Pharm Chem Life Sci 338:96–104

    Article  CAS  Google Scholar 

  76. Cao SL, Han Y, Yuan CZ, Y et al (2013) Synthesis and antiproliferative activity of 4-substituted-piperazine-1-carbodithioate derivatives of 2,4-diaminoquinazoline. Eur J Med Chem 64:401–409

    Google Scholar 

  77. Cao SL, Feng YP, Jiang YY et al (2005) Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg Med Chem Lett 15(7):1915–1917

    Article  CAS  Google Scholar 

  78. Asadipour a, Shams Z, Eskandari K, et al (2017) Efficient, straightforward, catalyst-free synthesis of medicinally important S-alkyl/benzyl dithiocarbamates under green conditions. Res Chem Intermed 44(2):1295–1304

    Article  CAS  Google Scholar 

  79. Costa TM, Tavares LBB, de Oliveira D (2016) Fungi as a source of natural coumarins production. Appl Microbiol Biotechnol 100(15):6571–6584

    Article  CAS  Google Scholar 

  80. Banik I, Banik BK (2013) Synthesis of β-Lactams and Their Chemical Manipulations Via Microwave-Induced reactions. Top Heterocycl Chem 30:183–222

    Article  CAS  Google Scholar 

  81. Mehta PD, Sengar NPS, Pathak AK (2010) 2-Azetidinone – A new profile of various pharmacological activities. Eur J Med Chem 45(12):5541–5560

    Article  CAS  Google Scholar 

  82. Banik BK, Banik I, Becker FF (2010) Novel Anticancer β-Lactams. Top Heterocycl Chem 22:349–373

    Article  CAS  Google Scholar 

  83. Bandyopadhyay D, Rhodes E, Banik B (2013) A green, chemoselective, and practical approach toward N- (2-azetidinonyl) 2,5-disubstituted pyrroles. RSC Adv 3:16756–16764

    Article  CAS  Google Scholar 

  84. Taber GP, Pfisterer DM, Colberg JC (2004) A New and Simplified Process for Preparing N-[4-(3,4-Dichlorophenyl)-3,4-dihydro-1(2H)-naphthalenylidene]methanamine and a Telescoped Process for the Synthesis of (1S-cis)-4-(3,4-Dichlorophenol)-1,2,3,4-tetrahydro-N-methyl-1-naphthalenamine Mandelate: Key Intermediates in the Synthesisof Sertrailine Hydrochloride. Org Proc Res Dev 8(3):385–388

    Article  CAS  Google Scholar 

  85. Xie X, Tang Y (2007) Efficient Synthesis of Simvastatin by Use of Whole-Cell Biocatalysis. Appl Environ Microbiol 73(7):2054–2060

    Article  CAS  Google Scholar 

  86. Talley JJ, Penning TD, Collins PW et al (1997) Synthesis and Biological Evaluation of the 1,5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors: Identification of 4-[5-(4-Methylphenyl)- 3- (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib). J Med Chem 40(9):1347–1365

    Article  Google Scholar 

  87. Fortunak JMD, Byrn SR, Dyson B et al (2013) An Efficient, Green Chemical Synthesis of the Malaria Drug. Piperaquine. Trop J Pharm Res 12(5):791–798

    Google Scholar 

  88. Jennings RA, Kissel WS, Le TV et al (2003) An enantioselective synthesis of (S)-(+)-3-aminomethyl-5-methylhexanoic acid via asymmetric hydrogenation. J Org Chem 68(14):5731–5734

    Article  CAS  Google Scholar 

  89. Patel RN (1998) Tour de Paclitaxel: Biocatalysis for semisynthesis. Ann Rev Microbiol 98:361–395

    Article  Google Scholar 

  90. Anderson BA, Hansen MM, Harkness AR et al (1995) Application of a Practical Biocatalytic Reduction to an Enantioselective Synthesis of the 5H–2,3-Benzodiazepine LY300164. J Am Chem Soc 117(49):12358–12359

    Article  CAS  Google Scholar 

  91. Jennings S. (Pfizer) (2005). A Green Process for the Synthesis of Quinapril Hydrochloride: Summary for the Presidential Green Chemistry Challenge Awards Program.

    Google Scholar 

  92. Cann MC, Connelly MC (2000) The BHC company synthesis of Ibuprofen, real world case, green chemistry. ACS, Washington DC

    Google Scholar 

  93. Abou-Khalil BW (2016) Antiepileptic Drugs. Continuum:Lifelong Learning in Neurology. 22(1):132–156.

    Google Scholar 

  94. Konnert L, Colacino E, Reneaud B et al (2014) Mechanochemical preparation of Hydantoins from Amino Esters: Application to the Synthesis of the Antiepileptic Drug Phenytoin. J Org Chem. 79(21):10132–10142

    Article  CAS  Google Scholar 

  95. Sahoo BM, Dinda SC, Kumar BVVR, Panda JR (2013) Green Synthesis and Evaluation of 3-(aryl)-2-thioxo-2,3-dihydroquinazolin-4(1H)-ones. Int J Pharm Sci Nanotech 6(2):2046–2052

    Google Scholar 

  96. Korto GK et al (2013) The steps synthesis of Acetaminophen. Sr seraphim Gibbons undergraduate symposium 26.

    Google Scholar 

  97. Zhou W, Zhong G, Rao X (2012) Identification of Aminopyridazine-Derived Antineuroinflammatory Agents Effective in an Alzheimer’s Mouse Model. ACS Med Chem Lett 3(11):903–907

    Article  CAS  Google Scholar 

  98. Caroff E, Meyer E, Treiber A (2014) Optimization of 2-phenyl-pyrimidine-4-carboxamides towards potent, orally bioavailable and selective P2Y(12) antagonists for inhibition of platelet aggregation. Bioorg Med Chem Lett. 24(17):4323–4331

    Article  CAS  Google Scholar 

  99. Lee MY, Ganapathy HS, Lim KT (2010) Controlled drug release applications of the inclusion complex of peracetylated-β-cyclodextrin and water-soluble drugs formed in supercritical carbon dioxide. J Phys Chem Solids 71(4):630–633

    Article  CAS  Google Scholar 

  100. Sanghvi YS, Ravikumar VT, Scozzari AN et al (2001) Applications of green chemistry in the manufacture of oligonucleotide drugs. Pure Appl Chem 73(1):175–180

    Article  CAS  Google Scholar 

  101. Song B, Hu G (2018) Lotus Leaf-Inspired Bone Cement Particles with Ultrahigh Drug Encapsulation Capacity. ACS Appl Bio Mater 1(1):175–184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinathan Anilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radhika, S., Neetha, M., Anilkumar, G. (2021). Green in Pharmaceutical Chemistry. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_8

Download citation

Publish with us

Policies and ethics