Skip to main content

Organic Reactions in Water

  • Chapter
  • First Online:
Green Organic Reactions

Abstract

Water is the greenest solvent with smallest environmental impact. The number of water mediated organic reactions has rapidly increased in number during the last couple of years. A broad range of organic reactions are carried out in water and that include, cross-coupling reactions, pericyclic reactions, radical reactions, C–H activation reactions and so on. The current chapter focuses on some important reactions carried out in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas PT, Warner JC (1988) Green chemistry—theory and practice. Oxford University Press, New York

    Google Scholar 

  2. Kitanosono T, Masuda K, Xu P, Kobayashi S (2018) Catalytic organic reactions in water toward sustainable society. Chem Rev 118:679–746

    Article  CAS  Google Scholar 

  3. Lindstrom UM (2008) Organic reactions in water: principles strategies and applications. Wiley, Hoboken

    Google Scholar 

  4. Li C-J, Chan T-H (2007) Comprehensive organic reactions in aqueous media. Wiley, Hoboken

    Google Scholar 

  5. Butler RN, Coyne AG (2010) Water: nature’s reaction enforcer—comparative effects for organic synthesis “in-water” and “on-water”. Chem Rev 110:6302–6337

    Article  CAS  Google Scholar 

  6. Butler RN, Coyne AG (2016) Organic synthesis reactions on-water at the organic–liquid water interface. Org Biomol Chem 14:9945–9960

    Article  CAS  Google Scholar 

  7. Harry NA, Radhika S, Neetha M, Anilkumar G (2019) Recent advances and prospects of organic reactions “on water”. Chem Sel 4:12337–12355

    CAS  Google Scholar 

  8. Breslow R (2004) Determining the geometries of transition states by use of antihydrophobic additives in water. Acc Chem Res 37:471–478

    Article  CAS  Google Scholar 

  9. Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB (2005) “On Water”: unique reactivity of organic compounds in aqueous suspension. Angew Chem Int Ed 44:3275–3279

    Article  CAS  Google Scholar 

  10. Li C-J, Chan T-K (1997) Organic. Reactions in aqueous media. New York, Wiley

    Google Scholar 

  11. Li C-J, Chen L (2006) Organic chemistry in water. Chem Soc Rev 35:68–82

    Article  Google Scholar 

  12. Engberts JBFN, Blandamer MJ (2001) Understanding organic reactions in water: from hydrophobic encounters to surfactant aggregates. Chem Commun 1701–1708

    Google Scholar 

  13. Sinou D (2002) Asymmetric organometallic-catalyzed reactions in aqueous media. Adv Synth Catal 344:221–237

    Article  CAS  Google Scholar 

  14. Harry NA, Cherian RM, Radhika S, Anilkumar G (2019) A novel catalyst-free, eco-friendly, on water protocol for the synthesis of 2,3-dihydro-1H-perimidines. Tetrahedron Lett 60:150946–150949

    Article  CAS  Google Scholar 

  15. Yaragorla S, Singh G, Dada R (2016) ‘On water synthesis’ of oxindoles bearing quaternary carbon center through C–H (sp3) functionalization of methyl azaarenes. Tetrahedron Lett 57:591–594

    Article  CAS  Google Scholar 

  16. Jebari M, Pasturaud K, Picard B, Maddaluno J, Rezgui F, Chataigner I, Legros J (2016) “On water” reaction of deactivated anilines with 4-methoxy-3-buten-2-one, an effective butynone surrogate. Org Biomol Chem 14:11085–11087

    Article  CAS  Google Scholar 

  17. Yang L, Wu Y, Yang Y, Wen C, Wan JP (2018) Catalyst-free synthesis of 4-acyl-NH-1,2,3-triazoles by water-mediated cycloaddition reactions of enaminones and tosyl azide. Beilstein J Org Chem 14:2348–2353

    Article  CAS  Google Scholar 

  18. Tankam T, Srisa J, Sukwattanasinitt M, Wacharasindhu S (2018) Microwave-enhanced on-water amination of 2-mercaptobenzoxazoles to prepare 2-aminobenzoxazoles. J Org Chem 83:11936–11943

    Article  CAS  Google Scholar 

  19. Zheng Q, Dong J, Sharpless KB (2016) Ethenesulfonyl fluoride (ESF): an on-water procedure for the kilogram-scale preparation. J Org Chem 81:11360–11362

    Article  CAS  Google Scholar 

  20. Chinthakindi PK, Kruger HG, Govender T, Naicker T, Arvidsson PI (2016) On-water synthesis of biaryl sulfonyl fluorides. J Org Chem 81:2618–2623

    Article  CAS  Google Scholar 

  21. Ali MA, Yao X, Li G, Lu H (2016) Rhodium-catalyzed selective mono- and diamination of arenes with single directing site “on water”. Org Lett 18:1386–1389

    Article  CAS  Google Scholar 

  22. Chakraborti G, Paladhi S, Mandal T, Dash J (2018) “On water’’ promoted ullmann-type C–N bond-forming reactions: application to carbazole alkaloids by selective N-arylation of aminophenols. J Org Chem 83:7347–7359

    Article  CAS  Google Scholar 

  23. Czerwiński P, Michalak M (2017) NHC-Cu(I)-catalyzed friedländer-type annulation of fluorinated o-aminophenones with alkynes on water: competitive base-catalyzed dibenzo[b, f][1,5]diazocine formation. J Org Chem 82:7980–7997

    Article  CAS  Google Scholar 

  24. Sun H, Xiao L, Li W, Xie Q, Shao L (2017) On-water silver(I)-catalyzed cycloisomerization of acetylenic free amines/amides towards 7-azaindole/indole/isoquinolone derivatives. Synthesis 49:4845–4852

    Article  CAS  Google Scholar 

  25. Perumgani PC, Parvathaneni SP, Keesara S, Mandapati MR (2016) Recyclable Pd(II)complex catalyzed oxidative sp2 C–H bond acylation of 2-aryl pyridines with toluene derivatives. J Organomet Chem 822:189–195

    Article  CAS  Google Scholar 

  26. Kalari S, Babar DA, Karale UB, Makane VB, Rode HB (2017) On water direct arylation of imidazo[1,2-a]pyridines with aryl halides. Tetrahedron Lett 58:2818–2821

    Article  CAS  Google Scholar 

  27. Faarasse S, Kazzouli SE, Naas M, Jouha J, Suzenet F, Guillaumet G (2017) “On water” direct C-3 arylation of 2H-Pyrazolo[3,4-b]pyridines. J Org Chem 82:12300–12306

    Article  CAS  Google Scholar 

  28. Li X, Chen X, Jiang Y, Chen S, Qu L, Qu Z, Yuan J, Shi H (2016) Highly efficient ultrasonic-assisted cucl-catalyzed 1,3-dipolar cycloaddition reactions in water: synthesis of coumarin derivatives linked with 1,2,3-triazole moiety. J Heterocyclic Chem 53:1402–1411

    Article  CAS  Google Scholar 

  29. Sarode PB, Bahekar SP, Chandak HS (2016) DABCO/AcOH jointly accelerated copper(I)-catalysed cycloaddition of azides and alkynes on water at room temperature. Synlett 27:2681–2684

    Article  CAS  Google Scholar 

  30. Sorrenti A, Illa O, Ortuño RM (2013) Amphiphiles in aqueous solution: well beyond a soap bubble. Chem Soc Rev 42:8200–8219

    Article  CAS  Google Scholar 

  31. Dwars T, Paetzold E, Boehme G (2005) Reactions in micellar systems. Angew Chem Int Ed 44:7174–7199

    Article  CAS  Google Scholar 

  32. Yu X, Jiang B, Cheng S, Huang Z, Zeng X (2003) Comparative reactivities of metal cation-catalyzed hydrolysis of p-nitrophenyl picolinate in micellar solutions. J Dispers Sci Technol 24:761–765

    Article  CAS  Google Scholar 

  33. Gaemers S, Keune K, Kluwer AM, Elsevier CJ (2000) Selective C−H bond activation with Na2PtCl4 in inverted micelles. Eur J Inorg Chem 2000:1139–1141

    Article  Google Scholar 

  34. Tohma H, Takizawa S, Watanabe H, Fukuoka Y, Maegawa T, Kita Y (1999) Hypervalent iodine(V)-induced asymmetric oxidation of sulfides to sulfoxides mediated by reversed micelles: novel nonmetallic catalytic system. J Org Chem 64:3519–3523

    Article  CAS  Google Scholar 

  35. Dadyburjor DB, Fout TE, Zondlo JW (2000) Ferric-sulfide-based catalysts made using reverse micelles: effect of preparation on performance in coal liquefaction. Catal Today 63:33–41

    Article  CAS  Google Scholar 

  36. Grassert I, Paetzold E, Oehme G (1993) Influence of different types of amphiphiles on the rhodium(I) complex-catalyzed asymmetric hydrogenation of (Z)-methyl-α-acetamidocinnamate in aqueous medium. Tetrahedron 49:6605–6612

    Article  CAS  Google Scholar 

  37. Rodenas E, Dolcet C, Valiente M, Valeron EC (1994) Physical properties of dodecyltrimethylammonium bromide (DTAB) micelles in aqueous solution and their behavior as the reaction medium. Langmuir 10:2088–2094

    Article  CAS  Google Scholar 

  38. Bunton CA (1979) Reaction kinetics in aqueous surfactant solutions. Catal Rev Sci Eng 20:1–50

    Article  CAS  Google Scholar 

  39. Martinek KM, Yatimirski AK, Osipov AP, Berezin IV (1973) Micellar effects on kinetics and equilibrium of synthesis and hydrolysis of benzylideneaniline: a general kinetic conception of micellar catalysis. Tetrahedron 29:963–969

    Article  CAS  Google Scholar 

  40. Scrimin P, Tecilla P, Tonellato U (1994) Chiral lipophilic ligands. 1. enantioselective cleavage of alpha-amino acid esters in metallomicellar aggregates. J Org Chem 59:4194–4201

    Article  CAS  Google Scholar 

  41. Müller W, Déjugnat C, Zemb T, Dufrêche J, Diat O (2013) How do anions affect self-assembly and solubility of cetylpyridinium surfactants in water. J Phys Chem B 117:1345–1356

    Article  CAS  Google Scholar 

  42. Bergstrom M (2001) Synergistic effects in mixtures of an anionic and a cationic surfactant. Langmuir 17:993–998

    Article  CAS  Google Scholar 

  43. Lai DT, Connor CJO (2000) Synergistic effects of surfactants on kid pregastric lipase catalyzed hydrolysis reactions. Langmuir 16:115–121

    Article  CAS  Google Scholar 

  44. Mulqueen M, Blankschtein D (2000) Prediction of equilibrium surface tension and surface adsorption of aqueous surfactant mixtures containing zwitterionic surfactants. Langmuir 16:7640–7654

    Article  CAS  Google Scholar 

  45. Manet S, Karpichev Y, Dedovets D, Oda R (2013) Effect of hofmeister and alkylcarboxylate anionic counterions on the krafft temperature and melting temperature of cationic gemini surfactants. Langmuir 29:3518–3526

    Article  CAS  Google Scholar 

  46. Lu JR, Zhao XB, Yaseen M (2007) Biomimetic amphiphiles: biosurfactants. Curr Opin Colloid Interf Sci 12:60–67

    Article  CAS  Google Scholar 

  47. Berti D (2006) Self assembly of biologically inspired amphiphiles. Curr Opin Colloid Interf Sci 11:74–78

    Article  CAS  Google Scholar 

  48. Bagchi B (2005) Water dynamics in the hydration layer around proteins and micelles. Chem Rev 105:3197–3219

    Article  CAS  Google Scholar 

  49. Lipshutz BH, Ghorai S, Clerget MC- (2018) The hydrophobic effect applied to organic synthesis: recent synthetic chemistry “in water”. Chem Eur J 24:6672–6695

    Article  CAS  Google Scholar 

  50. Sorella GL, Strukul G, Scarso A (2015) Recent advances in catalysis in micellar media. Green Chem 17:644–683

    Article  CAS  Google Scholar 

  51. Kumar D, Seth K, Kommi DN, Bhagat S, Chakraborti AK (2013) Surfactant micelles as microreactors for the synthesis of quinoxalines in water: scope and limitations of surfactant catalysis. RSC Adv 3:15157–15168

    Article  CAS  Google Scholar 

  52. Wang L-M, Jiao N, Qiu J, Yu J-J, Liu J-Q, Guo F-L, Liu Y (2010) Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron 66:339–343

    Article  CAS  Google Scholar 

  53. Kumar A, Gupta MK, Kumar M, Saxena D (2013) Micelle promoted multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction in water. RSC Adv 3:1673–1678

    Article  CAS  Google Scholar 

  54. Mattiello S, Rooney M, Sanzone A, Brazzo P, Sassi M, Beverina L (2017) Suzuki-Miyaura micellar cross-coupling in water, at room temperature, and under aerobic atmosphere. Org Lett 19:654–657

    Article  CAS  Google Scholar 

  55. Inamoto K, Nozawa K, Yonemoto M, Kondo Y (2011) Micellar system in copper-catalysed hydroxylation of arylboronic acids: facile access to phenols. Chem Commun 47:11775–11777

    Article  CAS  Google Scholar 

  56. Lipshutz BH, Ghorai S, Leong WWY, Taft BR (2011) Manipulating micellar environments for enhancing transition metal-catalyzed cross-couplings in water at room temperature. J Org Chem 76:5061–5073

    Article  CAS  Google Scholar 

  57. Lipshutz BH, Abela AR (2008) Micellar catalysis of Suzuki–Miyaura cross-couplings with heteroaromatics in water. Org Lett 10:5329–5332

    Article  CAS  Google Scholar 

  58. Krasovskiy A, Duplais C, Lipshutz BH (2009) Zn-mediated, Pd-catalyzed cross-couplings in water at room temperature without prior formation of organozinc reagents. J Am Chem Soc 131:15592–15593

    Article  CAS  Google Scholar 

  59. Takale BS, Thakore RR, Handa S, Gallou F, Reillyd J, Lipshutz BH (2019) A new, substtuted palladacycle for ppm level Pd-catalyzed Suzuki-Miyaura cross couplings in water. Chem Sci 10:8825–8831

    Article  CAS  Google Scholar 

  60. Vaidya GN, Fiske S, Verma H, Lokhande S, Kumar D (2019) A micellar catalysis strategy applied to the Pd-catalyzed C–H arylation of indoles in water. Green Chem 21:1448–1454

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinathan Anilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harry, N.A., Rohit, K.R., Anilkumar, G. (2021). Organic Reactions in Water. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_3

Download citation

Publish with us

Policies and ethics