Skip to main content

Visible Light-Catalyzed Asymmetric Synthesis: A Green Perspective

  • Chapter
  • First Online:
Green Organic Reactions

Abstract

Asymmetric synthesis constitutes one of the most important areas in synthetic organic chemistry. The selective generation of the desired enantiomer during a reaction gratifies many principles of the “green chemistry”. It makes the reaction more atom economical and avoids the use of unnecessary derivatizations using chiral auxiliaries. The need of resolution techniques could also be eliminated. The merging of visible light catalysis with the asymmetric synthesis has made it more efficient in terms of enantiomeric enrichment. In this chapter, we summarize the recent developments reported in the area of transition metal-free visible light-catalyzed asymmetric synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. (a) Noyori R (2002) Asymmetric catalysis: science and opportunities (Nobel lecture). Angew Chem Int Ed 41:2008–2022; (b) Knowles WS (2002) Asymmetric hydrogenations (Nobel lecture). Angew Chem Int Ed 41:1998–2007; (c) Sharpless KB (2002) Searching for new reactivity (Nobel lecture). Angew Chem Int Ed 41:2024–2032

    Google Scholar 

  2. Brimioulle R, Lenhart D, Maturi MM, Bach T (2015) Enantioselective catalysis of photochemical reactions. Angew Chem Int Ed 54:3872–3890

    Article  CAS  Google Scholar 

  3. Kim J-I, Schuster GB (1990) Enantioselective catalysis of the triplex Diels-Alder reaction: addition of trans-.beta.-methylstyrene to 1,3-cyclohexadiene photosensitized with (-)-1,1’-bis(2,4-dicyanonaphthalene). J Am Chem Soc 112:9635–9637

    Article  CAS  Google Scholar 

  4. Ibrahem I, Zhao G-L, Sunden H, Cordova A (2006) A route to 1,2-diols by enantioselective organocatalytic α-oxidation with molecular oxygen. Tetrahedron Lett 47:4659–4663

    Article  CAS  Google Scholar 

  5. Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR (2013) Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: development of an asymmetric aza-pinacol cyclization. J Am Chem Soc 135:17735–17738

    Article  CAS  Google Scholar 

  6. Welin ER, Warkentin AA, Conrad JC, MacMillan DWC (2015) Enantioselective α-alkylation of aldehydes by photoredox organocatalysis: rapid access to pharmacophore fragments from β-cyanoaldehydes. Angew Chem Int Ed 54:9668–9672

    Article  CAS  Google Scholar 

  7. Hammond GS, Cole RS (1965) Asymmetric induction during energy transfer. J Am Chem Soc 87:3256–3257

    Article  CAS  Google Scholar 

  8. Inoue Y, Yokoyama T, Yamasaki N, Tai A (1989) An optical yield that increases with temperature in a photochemically induced enantiomeric isomerization. Nature 341:225–226

    Article  CAS  Google Scholar 

  9. Asaoka S, Kitazawa T, Wada T, Inoue Y (1999) Enantiodifferentiating anti-Markovnikov photoaddition of alcohols to 1,1-diphenylalkenes sensitized by chiral naphthalenecarboxylates. J Am Chem Soc 121:8486–8498

    Article  CAS  Google Scholar 

  10. Kim J-I, Schuster GB (1992) Enantioselective catalysis of the triplex Diels-Alder reaction: a study of scope and mechanism. J Am Chem Soc 114:9309–9317

    Article  CAS  Google Scholar 

  11. Lu R, Yang C, Cao Y, Wang Z, Wada T, Jiao W, Mori T, Inoue Y (2008) Supramolecular enantiodifferentiating photoisomerization of cyclooctene with modified β-cyclodextrins: critical control by a host structure. Chem Commun 374–376

    Google Scholar 

  12. Müller C, Bauer A, Bach T (2009) Light-driven enantioselective organocatalysis. Angew Chem Int Ed 48:6640–6642

    Article  Google Scholar 

  13. Alonso R, Bach T (2014) A chiral thioxanthone as an organocatalyst for enantioselective [2+2] photocycloaddition reactions induced by visible light. Angew Chem Int Ed 53:4368–4371

    Article  CAS  Google Scholar 

  14. Neumann M, ldner SF, Kçnig B, Zeitler K (2011) Metal‐free, cooperative asymmetric organophotoredox catalysis with visible light. Angew Chem Int Ed 50:951–954; Angew Chem 123:981–985

    Google Scholar 

  15. Henin F, Muzart J, Pete J-P, M’boungou-M’passi A, Rau H (1991) Enantioselective protonation of a simple enol: aminoalcohol-catalyzed ketonization of a photochemically produced 2-methylinden-3-ol. Angew Chem Int Ed 30:416–418

    Article  Google Scholar 

  16. Cecere G, Kçnig CM, Alleva JL, MacMillan DWC (2013) Enantioselective direct α-amination of aldehydes via a photoredox mechanism: a strategy for asymmetric amine fragment coupling. J Am Chem Soc 135:11521–11524

    Article  CAS  Google Scholar 

  17. Vignola N, List B (2004) Catalytic asymmetric intramolecular α-alkylation of aldehydes. J Am Chem Soc 126:450–451; Hayashi Y, Gotoh H, Hayashi T, Shoji M (2005) Diphenylprolinol silyl ethers as efficient organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes. Angew Chem Int Ed 44:4212–4215; Angew Chem 117:4284–4287

    Google Scholar 

  18. Brunner H, Bgler J, Nuber B (1995) Enantioselective catalysis 98. Preparation of 9-amino(9-deoxy)cinchona alkaloids. Tetrahedron Asymmetry 6:1699–1702

    Article  CAS  Google Scholar 

  19. Córdova A, Sundén H, Engqvist M, Ibrahem I, Casas J (2004) The direct amino acid-catalyzed asymmetric incorporation of molecular oxygen to organic compounds. J Am Chem Soc 126:8914–8915

    Article  Google Scholar 

  20. Neumann M, Fuldner S, Konig B, Zeitler K (2011) Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. Angew Chem Int Ed 50(4):951–954

    Article  CAS  Google Scholar 

  21. Arceo E, Jurberg ID, Alvarez-Fernandez A, Melchiorre P (2013) Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nat Chem 5:750–756

    Article  CAS  Google Scholar 

  22. Bahamonde A, Melchiorre P (2016) Mechanism of the stereoselective α-alkylation of aldehydes driven by the photochemical activity of enamines. J Am Chem Soc 138:8019–8030

    Article  CAS  Google Scholar 

  23. Bonilla P, Rey YP, Holden CM, Melchiorre P (2018) Photo-organocatalytic enantioselective radical cascade reactions of unactivated olefins. Angew Chem Int Ed 57:12819–12823

    Article  CAS  Google Scholar 

  24. Mazzarella D, Crisenza GEM, Melchiorre P (2018) Asymmetric photocatalytic C−H functionalization of toluene and derivatives. J Am Chem Soc 140:8439–8443

    Article  CAS  Google Scholar 

  25. Bergonzini G, Schindler CS, Wallentin C-J, Jacobsen EN, Stephenson CRJ (2014) Photoredox activation and anion binding catalysis in the dual catalytic enantioselective synthesis of β-amino esters. Chem Sci 5:112–116

    Article  CAS  Google Scholar 

  26. Lin L, Bai X, Ye X, Zhao X, Tan C-H, Jiang Z (2017) Organocatalytic enantioselective protonation for photoreduction of activated ketones and ketimines induced by visible light. Angew Chem Int Ed 56:13842–13846

    Article  CAS  Google Scholar 

  27. Shao T, Yin Y, Lee R, Zhao X, Chai G, Jiang Z (2018) Sequential photoredox catalysis for cascade aerobic decarboxylative povarov and oxidative dehydrogenation reactions of N-aryl a-amino acids. Adv Synth Catal 360:1754–1760

    Article  CAS  Google Scholar 

  28. Li J, Kong M, Qiao B, Lee R, Zhao X, Jiang Z (2018) Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling. Nat Commun 9:2445–2453

    Article  Google Scholar 

  29. Liu X, Liu Y, Chai G, Qiao B, Zhao X, Jiang Z (2018) Organocatalytic enantioselective addition of α-aminoalkyl radicals to isoquinolines. Org Lett 20:6298–6301

    Article  CAS  Google Scholar 

  30. Bu L, Li J, Yin Y, Qiao B, Chai G, Zhao X, Jiang Z (2018) Organocatalytic asymmetric cascade aerobic oxidation and semipinacol rearrangement reaction: a visible light-induced approach to access chiral 2,2-disubstituted indolin-3-ones. Chem Asian J 13:2382–2387

    Article  CAS  Google Scholar 

  31. Yin Y, Dai Y, Jia H, Li J, Bu L, Qiao B, Zhao X, Jiang Z (2018) Conjugate addition-enantioselective protonation of n-aryl glycines to α-branched 2-vinylazaarenes via cooperative photoredox and asymmetric catalysis. J Am Chem Soc 140:6083–6087

    Article  CAS  Google Scholar 

  32. Shao T, Li Y, Ma N, Li C, Chai G, Zhao X, Qiao B, Jiang Z (2019) Photoredox-catalyzed enantioselective α-deuteration of azaarenes with D2O. Science 16:410–419

    CAS  Google Scholar 

  33. Xiong W, Li S, Fu B, Wang J, Wang Q-A, Yang W (2019) Visible-light induction/Brønsted acid catalysis in relay for the enantioselective synthesis of tetrahydroquinolines. Org Lett 21:4173–4176

    Article  CAS  Google Scholar 

  34. Cao K, Tan S, Lee R, Yang S, Jia H, Zhao X, Qiao B, Jiang Z (2019) Catalytic enantioselective addition of prochiral radicals to vinylpyridines. J Am Chem Soc 141:5437–5443

    Article  CAS  Google Scholar 

  35. Hou M, Lin L, Chai X, Zhao X, Qiao B, Jiang Z (2019) enantioselective photoredox dehalogenative protonation. Chem Sci 10:6629–6634

    Article  CAS  Google Scholar 

  36. Emmanuel MA, Greenberg NR, Oblinsky DG, Hyster TK Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540:414–417

    Google Scholar 

  37. Biegasiewicz KF, Cooper SJ, Emmanuel MA, Miller DC, Hyster TK (2018) Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nat Chem 10:770–775

    Article  CAS  Google Scholar 

  38. Biegasiewicz KF, Cooper SJ, Gao X, Oblinsky DG, Kim JH, Garfinkle SE, Joyce LA, Sandoval BA, Scholes GD, Hyster TK, Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364:1166–1169.

    Google Scholar 

  39. Zhang W, Fueyo EF, Hollmann F, Martin LL, Pesic M, Wardenga R, Höhne M, Schmidt S (2015) Combining photo-organo redox- and enzyme catalysis facilitates asymmetric C–H bond functionalization. Eur J Org Chem 2019:80–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinathan Anilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ujwaldev, S.M., Anilkumar, G. (2021). Visible Light-Catalyzed Asymmetric Synthesis: A Green Perspective. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_14

Download citation

Publish with us

Policies and ethics