Skip to main content

Introduction to Green Chemistry

  • Chapter
  • First Online:
Green Organic Reactions

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 702 Accesses

Abstract

Green chemistry deals with the utilization of chemical methodologies and approaches that diminish the usage of raw materials or by-products resulting from a chemical reaction, solvents, catalysts, etc., in manufacturing, which generates hazardous materials that are dangerous to human health or harmful to the environment. Therefore, this branch of chemistry points to shield the surroundings by inventing new chemical processes that do not contaminate the mother earth. The expansion of environmental studies, the study of chemical manufacturing mechanisms, and the realization of the dangerous impact of some chemicals on the environment and the human being have led to the environmental laws interest in controlling the types and quantities of chemicals released by the chemical industry in any path of the environment. For this objective, the use of environmentally friendly processes and new technologies such as the green chemistry has become the choice for sustainable development. This chapter presents and discusses green chemistry concept, its history as well as the importance of this field in human life and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas PT, Beach ES (2009) Changing the course of chemistry. In: hanging the course of chemistry, green chemistry education. ACS Symposium Series American Chemical Society, Washington DC

    Google Scholar 

  2. Anastas PT, Zimmerman JB (2016) The molecular basis of sustainability Chem 1(1):10–12

    CAS  Google Scholar 

  3. Lu J-G, Li X, Zhao Y-X et al (2019) CO2 capture by ionic liquid membrane absorption for reduction of emissions of greenhouse gas. Environ Chem Lett 17(2):1031–1038

    Article  CAS  Google Scholar 

  4. Li N, Tompsett GA, Zhang T, Shi J et al (2011) Renewable gasoline from aqueous phase hydrodeoxygenation of aqueous sugar solutions prepared by hydrolysis of maple wood. Green Chem 13(1):91–101

    Article  CAS  Google Scholar 

  5. De Simone R, Chini MG, Riccio R et al. Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase − 1, 5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J Med Chem 54(6):1565–1575

    Google Scholar 

  6. Armor JN (1999) Striving for catalytically green processes in the twenty first century. Appl Catal A Gen 189(2):153–162

    Article  CAS  Google Scholar 

  7. Contractor RM, Garnett DI, Horowitz HS et al (1994) A new commercial scale process for n-butane oxidation to maleic anhydride using a circulating fluidized bed reactor. Stud Surf Sci Cata 82:233–242

    Article  CAS  Google Scholar 

  8. Clark JH (2016) Green and sustainable chemistry: an introduction. In: Summerton L, Sneddon HF, Jones LC, Clark JH (eds) Green and sustainable medicinal chemistry: methods, tools and strategies for the twenty first century pharmaceutical industry. Royal Society Chemistry, London, pp 1–11

    Google Scholar 

  9. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39(1):301–312

    Article  CAS  Google Scholar 

  10. Max M (2017) Advanced green chemistry-Part 1: Greener organic reactions and processes, vol 3. World Scientific

    Google Scholar 

  11. Lewis H, Gertsakis J, Grant T, Morelli N, Sweatman A (2017) Design + environment: a global guide to designing greener goods. Routledge, London

    Book  Google Scholar 

  12. Woodhouse EJ, Breyman S (2005) Green chemistry as social movement? Sci Tech Hum Values 30(2):199–222

    Article  Google Scholar 

  13. Mitarlis Ibnu S, Rahayu S, Sutrisno (2017) Environmental literacy with green chemistry oriented in twenty first century learning. AIP Conf Proc 1911(1):20020

    Article  CAS  Google Scholar 

  14. Anastas PT, Warner JC (1998) Green chemistry. Frontiers 640:1998

    Google Scholar 

  15. Gobina E (2014) Biorefinery products: global markets. BCC

    Google Scholar 

  16. Scheringer M (2017) Environmental chemistry and ecotoxicology: in greater demand than ever. Environ Sci Eur 29(1):3

    Article  CAS  Google Scholar 

  17. Stieger G, Scheringer M, Ng CA, Hungerbühler K (2014) Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants. Chemosphere 116:118–123

    Article  CAS  Google Scholar 

  18. Reif DM, Sypa M, Lock EF et al (2012) ToxPi GUI: an interactive visualization tool for transparent integration of data from diverse sources of evidence. Bioinformatics 29(3):402–403

    Article  CAS  Google Scholar 

  19. Mestres R (2005) Green chemistry-views and strategies*(5 pp). Environ Sci Pollut Res 12(3):128–132

    Article  CAS  Google Scholar 

  20. Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41(4):1437–1451

    Article  CAS  Google Scholar 

  21. Sheldon RA (2016) Engineering a more sustainable world through catalysis and green chemistry. J R Soc Interf 13(116):20160087

    Article  Google Scholar 

  22. Crawford SE, Hartung T, Hollert H et al (2017) Green toxicology: a strategy for sustainable chemical and material development. Environ Sci Eur 29(1):16

    Article  CAS  Google Scholar 

  23. Maertens A, Anastas N, Spencer PJ et al (2014) Food for thought: green toxicology. Altern Anim Exp ALTEX 31(3):243–249

    Google Scholar 

  24. Abdel-Shafy HI, Mansour MSM (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egypt J Pet 27(4):1275–1290

    Article  Google Scholar 

  25. Hjeresen DJ (2004) Green chemistry: the impact on water quality and supplies. In: Water and Sustainable Development: Opportunities for the Chemical Sciences: A Workshop Report to the Chemical Sciences Roundtable

    Google Scholar 

  26. Maxwell K, Benneworth P (2018) The construction of new scientific norms for solving grand challenges. Palgrave Commun 4(1):52

    Article  Google Scholar 

  27. Abdel-Aziem SH, Abd El-Kader HAM, Ibrahim FM, Sharaf HA, El makawy AI (2018) Evaluation of the alleviative role of Chlorella vulgaris and Spirulina platensis extract against ovarian dysfunctions induced by monosodium glutamate in mice. J Genet Eng Biotechnol 16(2):653–660

    Article  Google Scholar 

  28. Global status report on noncommunicable diseases (2014) World Health Organization

    Google Scholar 

  29. Lim SS, Vos T, Flaxman AD et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260

    Article  Google Scholar 

  30. Prüss-Ustün A, Wolf J, Corvalán C, Neville T, Bos R, Neira M (2016) Diseases due to unhealthy environments: an updated estimate of the global burden of disease attributable to environmental determinants of health. J Publ Health 39(3):464–475

    Article  Google Scholar 

  31. Thundiyil JG, Stober J, Besbelli N, Pronczuk J (2008) Acute pesticide poisoning: a proposed classification tool. Bull World Health Organ 86:205–209

    Article  Google Scholar 

  32. Mellon M, Fondriest S (2001) Union of Concerned Scientists. Hogging it: estimates of animal abuse in livestock. Nucleus 23:1–3

    Google Scholar 

  33. Anastas ND, Maertens A (2018) Integrating the principles of toxicology into a chemistry curriculum. In: Green Chemistry, Elsevier, pp 91–108

    Google Scholar 

  34. Gwinn M et al (2017) A public health perspective on twenty first century risk assessment. Am J Publ Heal 107(7):1032–1039

    Article  Google Scholar 

  35. Torok B, Dransfield T (2017) Green chemistry: an inclusive approach. Elsevier

    Google Scholar 

  36. Attina TM, Trasande L (2013) Economic costs of childhood lead exposure in low-and middle-income countries. Environ Health Perspect 121(9):1097–1102

    Article  Google Scholar 

  37. Beach ES, Cui Z, Anastas PT (2009) Green chemistry: a design framework for sustainability. Energy Environ Sci 2(10):1038–1049

    Article  CAS  Google Scholar 

  38. Khan KA (2018) Natural products chemistry: the emerging trends and prospective goals. Saudi Pharm J 26(5):739–753

    Article  Google Scholar 

  39. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219(1):1

    Article  CAS  Google Scholar 

  40. Jianhui B (2010) Study on surface O3 chemistry and photochemistry by UV energy conservation. Atmos Pollut Res 1(2):118–127

    Article  CAS  Google Scholar 

  41. Ghosh N, Das A, Chaffee S, Roy S, Sen CK (2018) Reactive oxygen species, oxidative damage and cell death. In: Immunity and inflammation in health and disease, Elsevier

    Google Scholar 

  42. Altemimi A, Lakhssassi N, Baharlouei A, Watson D, Lightfoot D (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6(4):42

    Article  CAS  Google Scholar 

  43. Zuin VG, Ramin LZ (2018) Green and sustainable separation of natural products from agro-industrial waste: challenges, potentialities, and perspectives on emerging approaches. In: Chemistry and chemical technologies in waste valorization, Springer, pp 229–282

    Google Scholar 

  44. Mojzer EB, Hrnčič MK, Škerget M, Knez Ž, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7):901–938

    Article  CAS  Google Scholar 

  45. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:47–61

    Article  CAS  Google Scholar 

  46. Suwal S, Marciniak A (2018) Technologies for the extraction, separation and purification of polyphenols–a review. Nepal J Biotechnol 6(1):74–91

    Article  Google Scholar 

  47. Wilczyński K, Kobus Z, Dziki D (2019) Effect of press construction on yield and quality of apple juice. Sustainability 11(13):1–15

    Article  CAS  Google Scholar 

  48. Hyun TK, Jang K-I (2016) Apple as a source of dietary phytonutrients: an update on the potential health benefits of apple. EXCLI J 15:565–569

    Google Scholar 

  49. Liguori I, Russo G, Curcio F et al (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772

    Article  CAS  Google Scholar 

  50. Malik P, Ameta RK, Singh M (2014) Preparation and characterization of bionanoemulsions for improving and modulating the antioxidant efficacy of natural phenolic antioxidant curcumin. Chem Biol Interact 222:77–86

    Article  CAS  Google Scholar 

  51. Richard PU, Duskey JT, Stolarov S, Spulber M, Palivan CG (2015) New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opin Drug Deliv 12(9):1527–1545

    Article  CAS  Google Scholar 

  52. Hecht F, Pessoa CF, Gentile LB, Rosenthal D, Carvalho DP, Fortunato RS (2016) The role of oxidative stress on breast cancer development and therapy. Tumor Biol 37(4):4281–4291

    Article  CAS  Google Scholar 

  53. Little JC, Weschler CJ, Nazaroff WW, Liu Z, Hubal EAC (2012) Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment. Environ Sci Technol 46(20):11171–11178

    Article  CAS  Google Scholar 

  54. Connon RE, Geist J, Werner I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12(9):12741–12771

    Article  CAS  Google Scholar 

  55. Balbus JM, Boxall ABA, Fenske RA, McKone TE, Zeise L (2013) Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment. Environ Toxicol Chem 32(1):62–78

    Article  CAS  Google Scholar 

  56. Welton T (2015) Solvents and sustainable chemistry. Proc R Soc A Math Phys Eng Sci 471(2183):20150502

    Google Scholar 

  57. Rogers L, Jensen KF (2019) Continuous manufacturing–the green chemistry promise? Green Chem 21(13):3481–3498

    Article  CAS  Google Scholar 

  58. de Barros JO, Kogawa AC, Salgado HRN (2017) Short-term stability study of doxycycline tablets by high performance liquid chromatography, spectrophotometry in the ultraviolet region and turbidimetry. J Pharm Sci Exp Pharmacol 2018:43–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosam M. Saleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saleh, H.M., Hassan, A.I. (2021). Introduction to Green Chemistry. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_1

Download citation

Publish with us

Policies and ethics