Skip to main content

Wet Chemical Processes for the Preparation of Composite Electrodes in All-Solid-State Lithium Battery

  • Chapter
  • First Online:
Next Generation Batteries

Abstract

The preparation of composite electrodes by using wet chemical processes is briefly reviewed in this chapter. Electrode materials and conductive additive or binder are first dispersed in precursor solutions (dissolution–reprecipitation process) or suspensions (suspension process) of solid electrolytes, and then the solvent is evaporated to form the electrode–electrolyte composite. By using these processes, solid electrolyte covers the surface of active material, and lithium conduction path in the composite electrode can be formed with very small amount of solid electrolyte loading, and thus all-solid-state battery with composite electrode of high loading of solid electrolyte can be constructed. The wet chemical process must be very important for the practical application of the all-solid-state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miura, A., Rosero-Navarro, N. C., Sakuda, A., Tadanaga, K., Phuc, N. H. H., Matsuda, A., et al. (2019). Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nature Reviews Chemistry, 3, 189–193.

    Article  Google Scholar 

  2. Park, K. H., Bai, Q., Kim, D. H., Oh, D. Y., Zhu, Y. Z., Mo, Y. F., & Jung, Y. S. (2018). Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Advanced Energy Materials, 8, 1800035.

    Article  Google Scholar 

  3. Teragawa, S., Aso, K., Tadanaga, K., Hayashi, A., & Tatsumisago, M. (2014). Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. Journal of Power Sources, 248, 939–942.

    Article  Google Scholar 

  4. Yubuchi, S., Teragawa, S., Aso, K., Tadanaga, K., Hayashi, A., & Tatsumisago, M. (2015). Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. Journal of Power Sources, 293, 941–945.

    Article  Google Scholar 

  5. Park, K. H., Oh, D. Y., Choi, Y. E., Nam, Y. J., Han, L. L., Kim, J. Y., et al. (2016). Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries. Advanced Materials, 28, 1874–1883.

    Article  Google Scholar 

  6. Choi, Y. E., Park, K. H., Kim, D. H., Oh, D. Y., Kwak, H. R., Lee, Y. G., & Jung, Y. S. (2017). Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries. Chemsuschem, 10, 2605–2611.

    Article  Google Scholar 

  7. Rosero-Navarro, N. C., Kinoshita, T., Miura, A., Higuchi, M., & Tadanaga, K. (2017). Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics, 23, 1619–1624.

    Article  Google Scholar 

  8. Kim, D. H., Oh, D. Y., Park, K. H., Choi, Y. E., Nam, Y. J., Lee, H. A., et al. (2017). Infiltration of solution-processable solid electrolytes into conventional Li-Ion-battery. Nano Letters, 17, 3013–3020.

    Article  Google Scholar 

  9. Rosero-Navarro, N. C., Miura, A., & Tadanaga, K. (2019). Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery. Journal of Sol-Gel Science and Technology, 89, 303–309.

    Article  Google Scholar 

  10. Rosero-Navarro, N. C., Miura, A., & Tadanaga, K. (2018). Composite cathode prepared by argyrodite precursor solution assisted by dispersant agents for bulk-type all-solid-state batteries. Journal of Power Sources, 396, 33–40.

    Article  Google Scholar 

  11. Yubuchi, S., Nakamura, W., Bibienne, T., Rousselot, S., Taylor, L. W., Pasquali, M., et al. (2019). All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. Journal Power Sources, 417, 125–131.

    Article  Google Scholar 

  12. Kim, D. H., Lee, H. A., Song, Y. B., Park, J. W., Lee, S. M., & Jung, Y. S. (2019). Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries. Journal of Power Sources, 426, 143–150.

    Article  Google Scholar 

  13. Phuc, N. H. H., Morikawa, K., Mitsuhiro, T., Muto, H., & Matsuda, A. (2017). Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries. Ionics, 23, 2061–2067.

    Article  Google Scholar 

  14. Yao, X., Liu, D., Wang, C., Long, P., Peng, G., Hu, Y. S., et al. (2016). High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Letters, 16, 7148–7154.

    Article  Google Scholar 

  15. Zhang, Q., Mwizerwa, J. P., Wan, H., Cai, L., Xu, X., & Yao, X. (2017). Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. Journal Materials Chemistry A, 5, 23919–23925.

    Article  Google Scholar 

  16. Xu, R. C., Wang, X. L., Zhang, S. Z., Xia, Y., Xia, X. H., Wu, J. B., & Tu, J. P. (2018). Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. Journal of Power Sources, 374, 107–112.

    Article  Google Scholar 

  17. Oh, D. Y., Kim, D. H., Jung, S. H., Han, J. G., Choi, N. S., & Jung, Y. S. (2017). Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. Journal Materials Chemistry A, 5, 20771–20779.

    Article  Google Scholar 

  18. Chida, S., Miura, A., Rosero Navarro, N. C., Higuchi, M., Phuc, N. H. H., Muto, H., et al. (2018). Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries. Ceramics International, 44, 742–746.

    Article  Google Scholar 

  19. Yubuchi, S., Uematsu, M., Hotehama, C., Sakuda, A., Hayashi, A., & Tatsumisago, M. (2019). An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. Journal Materials Chemistry A, 7, 558–566.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoharu Tadanaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tadanaga, K., Rosero-Navarro, N.C., Miura, A. (2021). Wet Chemical Processes for the Preparation of Composite Electrodes in All-Solid-State Lithium Battery. In: Kanamura, K. (eds) Next Generation Batteries. Springer, Singapore. https://doi.org/10.1007/978-981-33-6668-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6668-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6667-1

  • Online ISBN: 978-981-33-6668-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics