Skip to main content

Characterization of Cathode/Sulfide Electrolyte Interface Using a Thin-Film Model Battery

  • Chapter
  • First Online:
Next Generation Batteries

Abstract

Interfacial phenomena of oxide cathode/sulfide electrolytes are crucial for the improvement of energy density and cycle stability of all-solid-state batteries. Thin-film batteries provide a simple reaction field for mechanistic studies. We fabricated a model film battery consisted of LiCoO2 cathode, LiNbO3 buffer layer, amorphous Li3PS4 electrolyte, and Li metal anode by physical vapor deposition. Structural changes at the cathode-side interface were investigated by in situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) using Ar etching. The LiCoO2 lattice showed a reversible change under high voltage operation with the upper cutoff voltage of 4.5 V. A cathode electrolyte interphase (CEI) layer was formed at the interface by decomposition of LiNbO3 and Li3PS4. The ionic and electronic conductivities of the CEI layer could be crucial to improve the reaction resistance and the cycle stability of the oxide cathode/sulfide electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. a) Chen, Z., Dahn, J. R. (2004). Electrochimica Acta, 49, 1079–1090; b) Kajiyama, A., Masaki, R., Wakiyama, T., Matsumoto, K., Yoda, A., Inada, T., Yokota, H., Kanno, R. (2015). Journal of The Electrochemical Society, 162, A1516-A1522.

    Google Scholar 

  2. Kuwata, N., Kudo, S., Matsuda, Y., & Kawamura, J. (2014). Solid State Ionics, 262, 165–169.

    Article  Google Scholar 

  3. a) Oh, G., Hirayama, M., Kwon, O., Suzuki, K., Kanno, R. (2016). Chemistry of Materials, 28, 2634–2640; b) Oh, G., Hirayama, M., Kwon, O., Suzuki, K., Kanno, R. (2016). Solid State Ionics, 288, 244–247.

    Google Scholar 

  4. a) Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C., Ceder, G. (2016). Chemistry of Materials, 28, 266–273; b) Zhu, Y., He, X., Mo, Y. (2015). ACS Applied Materials & Interfaces, 7, 23685–23693.

    Google Scholar 

  5. a) Yazami, R. (1999). Electrochimica Acta 45, 87–97; b) Yazami, R., Reynier, Y. F. (2002). Electrochimica Acta 47, 1217–1223.

    Google Scholar 

  6. a) Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A. (2011). Nature Materials, 10, 682–686; b) Li, W. J., Hirayama, M., Suzuki, K., Kanno, R. (2016). Solid State Ionics 285, 136–142; c) Kato, Y., Shiotani, S., Morita, K., Suzuki, K., Hirayama, M., Kanno, R. (2018). The Journal of Physical Chemistry Letters, 9, 607-613.

    Google Scholar 

  7. a) Hirayama, M., Ido, H., Kim, K., Cho, W., Tamura, K., Mizuki, J. I., Kanno, R. (2010). Journal of the American Chemical Society, 132, 15268–15276; b) Taminato, S., Hirayama, M., Suzuki, K., Tamura, K., Minato, T., Arai, H., Uchimoto, Y., Ogumi, Z., Kanno, R. (2016). Journal of Power Sources, 307, 599-603.

    Google Scholar 

  8. a) Ogawa, M., Kanda, R., Yoshida, K., Uemura, T., Harada, K. Journal of Power Sources, 205, 487–490; b) Quan, Z., Hirayama, M., Sato, D., Zheng, Y., Yano, T. -A., Hara, K., Suzuki, K., Hara, M., Kanno, R. (2017). Journal of the American Ceramic Society, 100, 746-753.

    Google Scholar 

  9. Hata, J.-I., Hirayama, M., Suzuki, K., Dupré, N., Guyomard, D., & Kanno, R. (2019). Batteries & Supercaps, 2, 454–463.

    Article  Google Scholar 

  10. Ohta, N., Takada, K., Sakaguchi, I., Zhang, L., Ma, R., Fukuda, K., et al. (2007). Electrochemistry Communications, 9, 1486–1490.

    Article  Google Scholar 

  11. Sakuda, A., Hayashi, A., Hama, S., & Tatsumisago, M. (2010). Journal of the American Ceramic Society, 93, 765–768.

    Article  Google Scholar 

  12. Hirayama, M., Sonoyama, N., Abe, T., Minoura, M., Ito, M., Mori, D., et al. (2007). Journal of Power Sources, 168, 493–500.

    Article  Google Scholar 

  13. Amatucci, G. G. (1996). Journal of the Electrochemical Society, 143, 1114.

    Article  Google Scholar 

  14. Cherkashinin, G., Nikolowski, K., Ehrenberg, H., Jacke, S., Dimesso, L., & Jaegermann, W. (2012). Physical Chemistry Chemical Physics, 14, 12321–12331.

    Article  Google Scholar 

  15. Dupin, J. C., Gonbeau, D., Benqlilou-Moudden, H., Vinatier, P., & Levasseur, A. (2001). Thin Solid Films, 384, 23–32.

    Article  Google Scholar 

  16. Wang, J., Yang, S., Liu, X., Ren, S., Guan, F., & Chen, M. (2004). Applied Surface Science, 221, 272–280.

    Article  Google Scholar 

  17. Xiao, Y., Miara, L. J., Wang, Y., & Ceder, G. (2019). Joule, 3, 1252–1275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Hirayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirayama, M., Suzuki, K., Kanno, R., Masuda, T., Tamura, K. (2021). Characterization of Cathode/Sulfide Electrolyte Interface Using a Thin-Film Model Battery. In: Kanamura, K. (eds) Next Generation Batteries. Springer, Singapore. https://doi.org/10.1007/978-981-33-6668-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6668-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6667-1

  • Online ISBN: 978-981-33-6668-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics