Skip to main content

Suture Techniques for Spinal Soft Tissue Reconstruction

  • Chapter
  • First Online:
Tutorials in Suturing Techniques for Orthopedics

Abstract

The surgical incision closure technique is an important and indispensable part of spinal surgery. It greatly affects the postoperative prognosis of spinal disease, and for certain diseases, it can even become a critical factor determining the success or failure of the treatment. By taking cervical, thoracic, and lumbar posterior median surgical approaches as examples, this section will focus on the closure techniques of spinal incisions, operating skills, and precautions for the reconstruction and closure of the soft tissue of surgical incisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albee FH. Transplantation of a portion of the tibia into the spine for Pott’s disease. JAMA. 1911;57:885.

    Article  Google Scholar 

  2. Hibbs RH. An operation for progressive spinal deformities NY. J Med. 1911;93:1013.

    Google Scholar 

  3. Gililland JM, Anderson LA, Barney JK, Ross HL, Pelt CE, Peters C. Barbed versus standard sutures for closure in Total knee arthroplasty: a multicenter prospective randomized trial. J Arthroplast. 2014;29(Suppl. 2):135–8.

    Article  Google Scholar 

  4. Borzio RW, Piveci R, Kapadian BH, Jauregui JJ, Maheshwari AV. Barbed sutures in total hip and knee arthroplasty: what is the evidence? A meta-analysis. Int Orthopaedics (SICOT). 2016;40:225–31.

    Article  Google Scholar 

  5. Ting NT, Moric MM, Della Valle CJ, Levine BR. Use of knot-less suture for closure of Total hip and knee arthroplasties a prospective, randomized clinical trial. J Arthoplasty. 2012;27(10):1783–8.

    Article  Google Scholar 

  6. Smith EL, DiSegna ST, Shukla PY, Matzkin EG. Barbed versus traditional sutures: closure time, cost, and wound related outcome in Total joint arthroplasty. J Arthroplast. 2014;29:283–7.

    Article  Google Scholar 

  7. Gililland JM, Anderson LA, Sun G, Ericksoo JA, Peters CL. Perioperative closure-related complication rates and cost analysis of barbed suture for closure in TKA. Clin Orthop Relat Res. 2012;470:125–9.

    Article  PubMed  Google Scholar 

  8. Namba RS, Inacio MC, Paxton EW. Risk factors associated with deep surgical site infections after primary total knee arthroplasty: an analysis of 56,216 knees. J Bone Joint Surg Am. 2013 May 1;95(9):775–82.

    Article  PubMed  Google Scholar 

  9. Fowler JR, Perkins TA, Buttaro BA, Truant AL. Bacteria adhere less to barbed monofilament than braided sutures in a contaminated wound model. Clin Orthop Relat Res. 2013;471:665–71.

    Article  PubMed  Google Scholar 

  10. Mansour A, Ballard R, Garg S, Baulesh D, Erickson M. The use of barbed sutures during scoliosis fusion wound closure: a quality improvement analysis. J Pediatr Orthop. 2013;33:786–90. PMID: 24213622

    Article  PubMed  Google Scholar 

  11. Parikh PM, Davison SP, Higgins JP. Barbed suture tenorrhaphy: an ex vivo biomechanical analysis. Plast Reconstr Surg. 2009;124:1551–8.

    Article  CAS  PubMed  Google Scholar 

  12. Wu YJ, et al. Repositioning suture of the erector spinae muscle for lumbar spine surgery via the posterior approach: a prospective randomized study. Cell Biochem Biophys. 2014;69(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  13. Shani A, Poliansky V, et al. Nylon skin sutures carry a lower risk of post-operative infection than metal Staples in open posterior spine surgery: a retrospective case-control study of 270 patients. Surgical infections. Published online December 31, 2019.

    Google Scholar 

  14. Shakil H, Iqbal ZA, Al-Ghadir AH. Scoliosis: review of types of curves, etiological theories and conservative treatment. J Back Musculoskelet Rehabil. 2014;27(2):111–5.

    Article  PubMed  Google Scholar 

  15. McLeod L, Flynn J, Erickson M, Miller N, Keren R, Dormans J. Variation in 60-day readmission for surgical-site infections (SSIs) and reoperation following spinal fusion operations for neuromuscular scoliosis. J Pediatr Orthop. 2016;36(6):634–9.

    Article  PubMed  Google Scholar 

  16. Mackenzie WG, Matsumoto H, Williams BA, et al. Surgical site infection following spinal instrumentation for scoliosis: a multicenter analysis of rates, risk factors, and pathogens. J Bone Joint Surg Am. 2013;95(9):800–S2.

    Article  PubMed  Google Scholar 

  17. Subramanyam R, Schaffzin J, Cudilo EM, Rao MB, Varughese AM. Systematic review of risk factors for surgical site infection in pediatric scoliosis surgery. Spine J. 2015;15(6):1422–31.

    Article  PubMed  Google Scholar 

  18. Sullivan BT, Abousamra O, Puvanesarajah V, et al. Deep infections after pediatric spinal arthrodesis: differences exist with idiopathic, neuromuscular, or genetic and syndromic cause of deformity. J Bone Joint Surg Am. 2019;101(24):2219–25.

    Article  PubMed  Google Scholar 

  19. Yagi M, Hosogane N, Watanabe K, Asazuma T, Matsumoto M. Keio spine research group. The paravertebral muscle and psoas for the maintenance of global spinal alignment in patient with degenerative lumbar scoliosis. Spine J. 2016;16(4):451–8.

    Article  PubMed  Google Scholar 

  20. Akhaddar A, Alaoui M, Turgut M, Hall W. Iatrogenic vascular laceration during posterior lumbar disc surgery: a literature review [published online ahead of print, 2020 May 12]. Neurosurg Rev. 2020; https://doi.org/10.1007/s10143-020-01311-5.

  21. Mange TR, Sucato DJ, Poppino KF, Jo CH, Ramo BR. The incidence and risk factors for perioperative allogeneic blood transfusion in primary idiopathic scoliosis surgery [published online ahead of print, 2020 Mar 9]. Spine Deform. 2020; https://doi.org/10.1007/s43390-020-00093-6.

  22. Subramanyam R, Schaffzin J, Cudilo EM, Rao MB, Varughese AM. Systematic review of risk factors for surgical site infection in pediatric scoliosis surgery. Spine J. 2015;15(6):1422–31.

    Article  PubMed  Google Scholar 

  23. Vitale MG, Riedel MD, Glotzbecker MP, et al. Building consensus: development of a best practice guideline (BPG) for surgical site infection (SSI) prevention in high-risk pediatric spine surgery. J Pediatr Orthop. 2013;33(5):471–8.

    Article  PubMed  Google Scholar 

  24. Kalevski SK, Peev NA, Haritonov DG. Incidental Dural tears in lumbar decompressive surgery: incidence, causes, treatment, results. Asian J Neurosurg. 2010;5(1):54–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. AH S, G C, D S, et al. Predictive factors for dural tear and cerebrospinal fluid leakage in patients undergoing lumbar. Surgery. 2006;5(3):224–7.

    Google Scholar 

  26. Shengsheng C, Minjie R, Yuhong Q, et al. Clinical efficacy of medical glue combined with gelatin sponge in preventing cerebrospinal fluid leakage after spinal dural suture. J Chin Medical Guide. 2015;13(21):4–6.

    Google Scholar 

  27. Eismont FJ, Wiesel SW, Rothman RH. Treatment of dural tears associated with spinal surgery. J Bone Joint Surg American. 1981;63(7):1132–6.

    Article  CAS  Google Scholar 

  28. Papavero L, Engler N, Kothe R. Incidental durotomy in spine surgery: first aid in ten steps. Eur Spine J: official publication of the European Spine Society tESDS. 2015;24(9):2077–84.

    Article  Google Scholar 

  29. Strömqvist F, Jönsson B, Strömqvist B, et al. Dural lesions in lumbar disc herniation surgery: incidence, risk factors, and outcome. Eur Spine J. 2010;19(3):439–42.

    Article  PubMed  Google Scholar 

  30. Fang Z, Tian R, Jia Y-T, et al. Treatment of cerebrospinal fluid leak after spine surgery. Chin J traumatol = Zhonghua chuang shang za zhi. 2017;20(2):81–3.

    Article  PubMed  Google Scholar 

  31. Qi S. A randomized controlled study of suturing deep fascia during lumbar posterior short-segment decompression and fusion with barb-free sutures. Chin Tissue Eng Res. 2020;24(10):1585–90.

    Google Scholar 

  32. Zixiang W. Guidelines for evidence-based clinical diagnosis and treatment of orthopedics of the orthopedics branch of the Chinese medical doctor association: evidence-based clinical diagnosis and treatment guidelines for spinal dural tear and postoperative cerebrospinal fluid leakage. J Chin J Surgery. 2017;55(02):86–9.

    Google Scholar 

  33. Hida K, Yano S, Iwasaki Y. Considerations in the treatment of cervical ossification of the posterior longitudinal ligament. Chin Neurosurg. 2008;55:126–32.

    Google Scholar 

  34. Bosacco SJ, Gardner MJ, Guille JT, et al. Evaluation and treatment of dural tears in lumbar spine surgery: a review. Clin Orthop Relat Res. 2001;389:238–47.

    Article  Google Scholar 

  35. Black P. Cerebrospinal fluid leaks following spinal surgery: use of fat grafts for prevention and repair. Technical note. J Neurosurg. 2002;96:250–2.

    PubMed  Google Scholar 

  36. Narotam PK, Jose S, Nathoo N, et al. Collagen matrix (DuraGen) in dural repair: analysis of a new modified technique. Spine. 2004;29(24):2861–7.

    Article  PubMed  Google Scholar 

  37. Matsuoka T, Yamaura I, Kurosa Y, et al. Long-term results of the anterior floating method for cervical myelopathy caused by ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 2001;26(3):241–8.

    Article  CAS  Google Scholar 

  38. Hu P, Yu M, Liu X, et al. Cerebrospinal fluid leakage after surgeries on the thoracic spine: a review of 362 cases. Asian Spine J. 2016;10(3):472–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Khan MH, Rihn J, Steele G, et al. Postoperative management protocol for incidental dural tears during degenerative lumbar spine surgery: a review of 3,183 consecutive degenerative lumbar cases. Spine (Phila Pa 1976). 2006;31(22):2609–13.

    Article  Google Scholar 

  40. Gandhi J, DiMatteo A, Joshi G, et al. Cerebrospinal fluid leaks secondary to dural tears: a review of etiology, clinical evaluation, and management. Int J Neurosci. 2020;13:1–13.

    Google Scholar 

  41. Vaccaro AR. What is new in the diagnosis and prevention of spine surgical site infections. Spine J. 2015;15(2):336–47.

    Article  PubMed  Google Scholar 

  42. Ma L. Treatment of early infection after posterior spinal internal fixation with closed lavage and drainage. Sichuan Med. 2015;4

    Google Scholar 

  43. Samuel AM. CORR insights®: incidence of surgical site infection after spine surgery: what is the impact of the definition of infection. Clin Orthop Related Res. 2015;473(5):1620–1.

    Article  Google Scholar 

  44. Anderson PA. An update on modifiable factors to reduce the risk of surgical site infections. Spine J Official J North American Spine Soc. 2013;13(9):1017–29.

    Article  Google Scholar 

  45. Deyu C. Risk factors of incision infection after spinal surgery. Chin J Spine Spinal Cord. 3:77–80.

    Google Scholar 

  46. Bradford DS. Risk factors for infection after spinal surgery. Spine (Phila Pa 1976). 2005;30(12):1460–5.

    Article  Google Scholar 

  47. Fangcai L. Clinical features and treatment of early deep infection after spinal internal fixation. Zhejiang J Traumatic Surg. 024(004): 739–741.

    Google Scholar 

  48. Hu SS. Clinical outcome of deep wound infection after instrumented posterior spinal fusion. Spine (Phila Pa 1976). 2009;34(6):578–83.

    Article  Google Scholar 

  49. Patel R. A biofilm approach to detect bacteria on removed spinal implants. Spine (Phila Pa 1976). 2010;35(12):1218–24.

    Article  Google Scholar 

  50. Kaye KS. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(S2):S66–88.

    Article  PubMed  Google Scholar 

  51. Gluch H. Management of postoperative wound infection in posterior spinal fusion with instrumentation. J Spinal Disord. 1996;9(6):505–8.

    PubMed  Google Scholar 

  52. Shugang L. Treatment of infection after posterior scoliosis orthopedic fusion. Chinese Journal of Orthopaedics. 21(8): 453–456.

    Google Scholar 

  53. Zhongjun L. Treatment of deep wound infection after spinal surgery. Chin J Surg. 043(4): 229–231.

    Google Scholar 

  54. Jing L. Treatment of deep infection after thoracolumbar posterior internal fixation. Chin J Surg. 2005;43(20):1325–7.

    Google Scholar 

  55. Wang Y. Delayed infection after spinal internal fixation. Chin J Orthop. (08):88–89.

    Google Scholar 

  56. Giacomini S. Late-developing infection following posterior fusion for adolescent idiopathic scoliosis. Eur Spine J. 2011;20(1 Supplement):121–7.

    PubMed Central  Google Scholar 

  57. Qiu G. Abnormalities associated with congenital scoliosis a retrospective study of 226 chinese surgical cases. Spine (Phila Pa 1976). 2012;38(10):814–8.

    Google Scholar 

  58. Sheng L. Treatment strategy for early incision deep infection after spinal internal fixation. J Clin Orthop. (5):50–53+59.

    Google Scholar 

  59. Haoning Z. Treatment of infection after spinal internal fixation. Chin J Orthop. (015): 1357–1362.

    Google Scholar 

  60. Cohen DB. The presentation, incidence, etiology, and treatment of surgical site infections after spinal surgery. Spine (Phila Pa 1976). 2010;35(13):1323–8.

    Article  Google Scholar 

  61. Guo X. Debridement with preserving internals combined with vacuum negative pressure sealing drainage to treat early postoperative spinal infection. Chin J Spine and Spinal Cord. 2015;25(12):1123–5.

    Google Scholar 

  62. Lee JS. Implant removal for the management of infection after instrumented spinal fusion. J Spinal Disord Tech. 2010;23(4):258–65.

    Article  PubMed  Google Scholar 

  63. Wang X. Treatment of delayed infection after internal fixation of the spine pedicle screw system. Chin J Orthop. 190(20): 1577–1578.

    Google Scholar 

  64. Vaccaro A. Is surgical case order associated with increased infection rate after spine surgery. Spine (Phila Pa 1976). 2012;37(13):1170–4.

    Article  Google Scholar 

  65. van Middendorp JJ. A methodological systematic review on surgical site infections following spinal surgery: part 1 risk factors. Spine (Phila Pa 1976). 2012;37(24):2034–45.

    Article  Google Scholar 

  66. Sosna A. Antibiotic treatment for prevention of infectious complications in joint replacement. Acta Chir Orthop Traumatol Cech. 2006;73(2):108–14.

    PubMed  Google Scholar 

  67. Oliveri G. Prevention of post-operative infections in spine surgery by wound irrigation with a solution of povidone–iodine and hydrogen peroxide. Arch Orthop Trauma Surg. 2011;131(9):1203–6.

    Article  PubMed  Google Scholar 

  68. Zhikui L. Analysis of related factors of incisional infection after single-opening of the posterior cervical spine. Chin J Clin Res. v.31(5): 67–70.

    Google Scholar 

  69. Zhisheng L, Feipeng G, Gang C, et al. The causes and treatment of postoperative infection after superior cervical spine surgery. Pract Clin Med, 2013, 014(009): 71–72, 87, cover 3.

    Google Scholar 

  70. Dong Y, Zheng X, Honglin G, et al. Treatment of delayed deep infection after spinal internal fixation. Chin J Orthop. 2017;37(18):1150–5.

    Google Scholar 

  71. Guo L, Degang T, Wang J, et al. Observation on the therapeutic effects of early debridement and closed negative pressure drainage in the treatment of incisional infection after cervical posterior approach. Zhejiang J Traumatic Surg. 2014;000(004):528–529,530.

    Google Scholar 

  72. Nan Z, Faming T, Zihong L, et al. Analysis of effects of wound hedging and drainage for incision infection after cervical posterior approach single-opening surgery. Chin J Medical Guide. 2017;16(4):367–9.

    Google Scholar 

  73. Kuibo Z, Tao C, Guo Y, et al. Analysis of risk factors for early surgical site infection after thoracolumbar posterior internal fixation. J Sun Yat-sen Univ. 2013;34(6):986–90.

    Google Scholar 

  74. Kim JI, Suh KT, Kim SJ, et al. Implant removal for the man-agement of infection after instrumented spinal fusion. J Spi-nal Disord Tech. 2010;23(4):258–65.

    Article  Google Scholar 

  75. Chen SH, Lee CH, Huang KC. et al.Postoperative wound infection after posterior spinal instrumentation: analysis of long-term treatment outcomes. Eur Spine J. 2015;24(3):561–70.

    Article  PubMed  Google Scholar 

  76. Fei C, Lu G, Yijun K, et al. Treatment of deep infection after thoracolumbar posterior internal fixation. Chin J Surg. 2005;43(20):1325–7.

    Google Scholar 

  77. Zheng Y, Yu B, Lu S, Xiaoqiang Z. Application of vacuum sealing drainage in the treatment of early wound deep infection after thoracolumbar posterior internal fixation. Orthop Biomech Mater Clin Study. 2013;10(1):35–6.

    CAS  Google Scholar 

  78. Nenggao F. Zhang Yingbo, Zhang Zhiming, Jiang Cheng, VSD combined with lavage and drainage in the treatment of thoracolumbar incision infection. J Pract Orthop. 2014;20(1):145–8.

    Google Scholar 

  79. Xu Y. Analysis of related factors of postoperative wound infection in patients with spinal surgery. Diet Sci 2018 (16).

    Google Scholar 

  80. Ke J. Analysis of therapeutic effects of erected “voilet braided sutures” on .postoperative fat liquefaction for obese patients. Chin J Misdiagnostics. 2011;19:4639.

    Google Scholar 

  81. Allegranzi B, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016 Dec;16(12):e288–303.

    Article  PubMed  Google Scholar 

  82. ACS and surgical infection society: surgical site infection guidelines, 2016 Update.

    Google Scholar 

  83. Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. Published online May 3, 2017.

    Google Scholar 

  84. Guidelines for the prevention of surgical site infections in China. Chin J Gastrointest Surg. 2019;22(4):301–14.

    Google Scholar 

  85. Ueno M, Saito W, et al. Triclosan-coated sutures reduce wound infections after spinal surgery: a retrospective, nonrandomized, clinical study. Spine J. 2015 May 1;15(5):933–8.

    Article  PubMed  Google Scholar 

  86. Shani A, Poliansky V, et al. Nylon skin sutures carry a lower risk of post-operative infection than metal staples in open posterior spine surgery: a retrospective case-control study of 270 patients. Srugical Infections. Published online December 31, 2019.

    Google Scholar 

  87. Yonggang T, Yi J, Lianping X, et al. Treatment strategies for postoperative spinal infection. Chin J Spine Spinal Cord. 2009;19(9):717–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, W. et al. (2021). Suture Techniques for Spinal Soft Tissue Reconstruction. In: Tang, P., Wu, K., Fu, Z., Chen, H., Zhang, Y. (eds) Tutorials in Suturing Techniques for Orthopedics. Springer, Singapore. https://doi.org/10.1007/978-981-33-6330-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6330-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6329-8

  • Online ISBN: 978-981-33-6330-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics