Skip to main content

Latest Tools in Fight Against Cancer: Nanomedicines

  • Chapter
  • First Online:
NanoBioMedicine

Abstract

The application of nanotechnology in cancer management is being studied for specifically targeting cancer cells and destroying them with minimum damage to healthy tissues or using the nanoscale devices to detect cancer cells before they have formed tumors. Since the nanoparticles are much smaller than human cells, they easily move in and out of most cells just like large biomolecules of our body and can easily interact with other molecules on the surface as well as inside of the cells. Though the technology is not more than four decades old, it has produced substantial number of nanodiagnostic and nanotherapeutic agents with higher efficiency and safety. Nanotechnology has given a new insight for cancer treatment because of its potential to overcome the side effects of chemotherapeutic agents. An array of nanovehicle platforms can be designed which can specifically target the cancerous tissues, have high drug-loading capacities, and are favorable for endocytic intracellular uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghi M, Martuza RL (2005) Oncolytic viral therapies — the clinical experience. Oncogene 24:7802–7816. https://doi.org/10.1038/sj.onc.1209037

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Haider S, Jagannathan S, Anaissie E, Driscoll JJ (2014) MicroRNA theragnostics for the clinical management of multiple myeloma. Leukemia 28(4):732–738

    Article  CAS  PubMed  Google Scholar 

  • Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE (2006) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 116:150–158

    Article  CAS  PubMed  Google Scholar 

  • Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617–12621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliosmanoglu A, Basaran I (2012) Nanotechnology in cancer treatment. Nanomedicine Biotherapeutic Discov 2(4):1–3

    Google Scholar 

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  CAS  PubMed  Google Scholar 

  • Allen PM, Liu W, Chauhan VP, Lee J, Ting AY, Fukumura D et al (2010) In As (ZnCdS) quantum dots optimized for biological imaging in the near-infrared. J Am Chem Soc 132:470–−471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andtbacka RH, Agarwala SS, Ollila DW, Hallmeyer S, Milhem M et al (2016) Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of Talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma. Head Neck 38(12):1752–1758

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayyappa KSK, Suresh PK (2015) In silico comparative analysis of cancer and stem cell microarray data to demonstrate molecular transitions and the relative involvement of glycolysis and oxidative phosphorylation cost-effective correlation of bioenergetics and differentiation processes. Appli In Drug Develop 7(1):69–81

    Google Scholar 

  • Balachandran P, Govindarajan R (2005) Cancer: an ayurvedic perspective. Pharmacol Res 51:19–30

    Article  PubMed  Google Scholar 

  • Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44:936–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758. https://doi.org/10.1016/j.addr.2007.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barenholz Y (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Impact of tumorspecific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA 104:15549–15554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) Folatereceptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364−11371

    Article  CAS  Google Scholar 

  • Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA (2009) Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 4:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Bhattacharya R, Curley S, McNiven MA, Mukherjee P (2010) Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proc Natl Acad Sci USA 107:14541–14546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28:237–259

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Singh RD, Pagano R, Robertson JD, Bhattacharya R, Mukherjee P (2012) Switching the targeting pathways of a therapeutic antibody by nanodesign. Angew. Chem Int Ed Engl 51:1563–1567. https://doi.org/10.1002/anie.201105432

    Article  CAS  PubMed  Google Scholar 

  • Bhishagratha KL (1991) Sushruta samhita. Sushruta samhita. Choukhamba Orientalia, Varanasi

    Google Scholar 

  • Bhushan KR, Misra P, Liu F, Mathur S, Lenkinski RE, Frangioni JV (2008) Detection of breast cancer microcalcifications using a dual-modality SPECT/NIR fluorescent probe. J Am Chem Soc 130:17648–17649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bies C, Lehr CM, Woodley JF (2004) Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 56:425–435

    Article  CAS  PubMed  Google Scholar 

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387

    Article  CAS  PubMed  Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Article  Google Scholar 

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  • Chan S, Davidson N, Juozaityte E, Erdkamp F, Pluzanska A et al (2004) Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer. Ann Oncol 15:1527–1534

    Article  CAS  PubMed  Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2201

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Wang J, Rao T, He X, Xu T (2008) Pharmaceutical applications of dendrimers: Promising nanocarriers for drug delivery. Front Biosci 13:1447–1471

    Article  CAS  PubMed  Google Scholar 

  • Chytil P, Koziolová E, Etrych T, Ulbrich K (2018) HPMA copolymer-drug conjugates with controlled tumor-specific drug release. Macromol Biosci 18(1):1700209. https://doi.org/10.1002/mabi.201700209

    Article  CAS  Google Scholar 

  • Cravotto G, Boffa L, Genzini L, Garella D (2010) Phytotherapeutics: an evaluation of the potential of 1000 plants. J Clin Pharm Ther 35:11–48

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  CAS  PubMed  Google Scholar 

  • Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol Pharm 6:659–668

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher AW et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64(11):967–978

    Article  PubMed  CAS  Google Scholar 

  • Edelman LB, Eddy JA, Price ND (2010) In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med 2(4):438–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eloy JO, Petrilli R, Raspantini GL, Lee RJ (2018) Targeted liposomes for siRNA delivery to cancer. Curr Pharm Des. https://doi.org/10.2174/1381612824666180807121935

  • Ezpeleta I, Irache JM, Stainmesse S, Chabenat C, Gueguen J et al (1996) Gliadin nanoparticles for the controlled release of all-transretinoic acid. Int J Pharm 131:191–200

    Article  CAS  Google Scholar 

  • Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884

    Article  CAS  PubMed  Google Scholar 

  • Fomina N, McFearin C, Sermsakdi M, Edigin O, Almutairi A (2010) UV and near-IR triggered release from polymeric nanoparticles. J Am Chem Soc 132:9540–9542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frampton JE (2010) Mifamurtide: a review of its use in the treatment of osteosarcoma. Paediatr Drugs 12:141–153

    Article  PubMed  Google Scholar 

  • Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Chen X, Cheng Z (2010) Near-infrared quantum dots as optical probes for tumor imaging. Curr Top Med Chem 1:209–217

    Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    Article  CAS  PubMed  Google Scholar 

  • Ghamande S, Lin CC, Cho DC, Shapiro GI, Kwak EL et al (2014) A phase 1 open-label, sequential dose-escalation study investigating the safety, tolerability, and pharmacokinetics of intravenous TLC388 administered to patients with advanced solid tumors. Invest New Drugs 32:445–451. https://doi.org/10.1007/s10637-013-0044-7

    Article  CAS  PubMed  Google Scholar 

  • Gidwani B, Vyas A (2015) A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Int 2015:198268. https://doi.org/10.1155/2015/198268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill PS, Wernz J, Scadden DT, Cohen P, Mukwaya GM et al (1996) Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 14:2353–2364

    Article  CAS  PubMed  Google Scholar 

  • Glassman DC, Palmaira RL, Covington CM, Desai AM, Ku GY et al (2018) Nanoliposomal irinotecan with fluorouracil for the treatment of advanced pancreatic cancer, a single institution experience. BMC Cancer 18(1):693–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gökbuget N, Hartog CM, Bassan R, Derigs HG, Dombret H et al (2011) Liposomal cytarabine is effective and tolerable in the treatment of central nervous system relapse of acute lymphoblastic leukemia and very aggressive lymphoma. Haematologica 96:238–244

    Article  PubMed  CAS  Google Scholar 

  • Golden PL, Huwyler J, Pardridge WM (1998) Treatment of large solid tumors in mice with daunomycin-loaded sterically stabilized liposomes. Drug Deliv 5:207–212. https://doi.org/10.3109/10717549809052036

    Article  CAS  PubMed  Google Scholar 

  • Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P et al (2005) Phase III trial of nanoparticle albumin- bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803

    Article  CAS  PubMed  Google Scholar 

  • Guccione S, Li KC, Bednarski MD (2004) Vascular-targeted nanoparticles for molecular imaging and therapy. Methods Enzymol 386:219–236

    Article  CAS  PubMed  Google Scholar 

  • Haemmerich D, Motamarry A (2018) Thermosensitive liposomes for image-guided drug delivery. Adv Cancer Res 139:121–146

    Article  PubMed  Google Scholar 

  • Harrison M, Tomlinson D, Stewart S (1995) Liposomal-entrapped doxorubicin: an active agent in AIDS-related Kaposi’s sarcoma. J Clin Oncol 13:914–920

    Article  CAS  PubMed  Google Scholar 

  • Ho KM, Li P (2008) Design and synthesis of novel magnetic core–shell polymeric particles. Langmuir 24:1801–1807

    Article  CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri A, Deshpande P, Torchilin V (2014) Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release. https://doi.org/10.1016/j.jconrel.2014.05.002

  • Josephson L, Lewis J, Jacobs P, Hahn PF, Stark DD (1988) The effects of iron oxides on proton relaxivity. Magn Reson Imaging 6:647–653

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Park SJ, Chung HK, Kang HW, Lee SW et al (2012) Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84:e77–e83. https://doi.org/10.1016/j.ijrobp.2012.02.030

    Article  CAS  PubMed  Google Scholar 

  • Ko AH (2016) Nanomedicine developments in the treatment of metastatic pancreatic cancer: focus on nanoliposomal irinotecan. Int J Nanomedicine 11:1225–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler N, Fryxell GE, Zhang M (2004) A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 126:7206–7211

    Article  CAS  PubMed  Google Scholar 

  • Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer—mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J Cancer Sci 11:265–283

    CAS  Google Scholar 

  • Kwon GS (2003) Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 20:357–403

    Article  CAS  PubMed  Google Scholar 

  • Lai LF, Guo HX (2011) Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int J Pharm 404:317–323

    Article  CAS  PubMed  Google Scholar 

  • Li KC, Guccione S, Bednarski MD (2002) Combined vascular targeted imaging and therapy: a paradigm for personalized treatment. J Cell Biochem Suppl 39:65–71

    Article  PubMed  CAS  Google Scholar 

  • Links M, Brown R (1999) Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs. Expert Rev Mol Med 1:1–21

    Google Scholar 

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm SJ et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Liu F, Feng L, Li M, Zhang J, Zhang N (2013) The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles. Biomaterials 34:2547–2564

    Article  CAS  PubMed  Google Scholar 

  • Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    Article  CAS  PubMed  Google Scholar 

  • Madaan A, Singh P, Awasthi A, Verma R, Singh AT et al (2013) Efficiency and mechanism of intracellular paclitaxel delivery by novel nanopolymer-based tumor-targeted delivery system, Nanoxel(TM). Clin Transl Oncol 15:26–32. https://doi.org/10.1007/s12094-012-0883-2

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharma Biopharma 71(3):409–419

    Article  CAS  Google Scholar 

  • Mamot C, Ritschard R, Wicki R, Stehle G, Dieterle T et al (2012) Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol 13:1234–1241. https://doi.org/10.1016/S1470-2045(12)

    Article  CAS  PubMed  Google Scholar 

  • Mandal BB, Kundu SC (2009) Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery. Nanotechnology 20:355101

    Article  PubMed  CAS  Google Scholar 

  • Manninger SP, Muldoon LL, Nesbit G, Murillo T, Jacobs PM, Neuwelt EA (2005) An exploratory study of ferumoxtran-10 nanoparticles as a blood–brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol 26:2290–2300

    PubMed  PubMed Central  Google Scholar 

  • Manzoor AA, Lindner LH, Landon CD, Park JY, Simnick AJ et al (2012) Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res 72:5566–5575. https://doi.org/10.1158/0008-5472.CAN-12-1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin FJ (1998) Clinical pharmacology and antitumor efficacy of DOXIL (pegylated liposomal doxorubicin). In: Lasic DD, Papahadjopoulos D (eds) Medical applications of liposomes. Elsevier, New York, pp 635–688

    Chapter  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ et al (2005) Quantum dots for live cells, in vivo imaging and diagnostics. Science 307:538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Aspitia A, Perez EA (2005) Nanoparticle albumin-bound paclitaxel (ABI-007): a newer taxane alternative in breast cancer. Future Oncol (London, England) 1:755–762

    Article  CAS  Google Scholar 

  • Morschhauser F, Radford J, Van Hoof A, Vitolo U, Soubeyran P et al (2008) Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol 26:5156–5164. https://doi.org/10.1200/JCO.2008.17.2015

    Article  CAS  PubMed  Google Scholar 

  • Mura M, Hopkins TG, Michael T, Abd-Latip N, Weir J, Aboagye E, Mauri F, Jameson C, Sturge J, Gabra H et al (2015) LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene 34:5025–5036

    Article  CAS  PubMed  Google Scholar 

  • Nahrendorf M, Keliher E, Marinelli B, Waterman P, Feruglio PF, Fexon L et al (2010) Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci USA 107:7910–7915

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuwelt EA, Varallyay P, Bago AG, Muldoon LL, Nesbit G, Nixon R (2004) Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol Appl Neurobiol 30:456–471

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama N, Kataoka K (2006) Current state achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Theory 112:630–648

    Article  CAS  Google Scholar 

  • Obata Y, Tajima S, Takeoka S (2010) Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release 142:267–276

    Article  CAS  PubMed  Google Scholar 

  • O’Brien S, Schiller G, Lister J, Damon L, Goldberg S et al (2013) High-dose vincristine sulfate liposome injection for advanced, relapsed, and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol 31:676–683

    Article  PubMed  CAS  Google Scholar 

  • Park JW (2002) Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 4:95–99. 436: 568–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BH, Hwang T, Liu TC, Sze DY, Kim JS et al (2008) Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: A phase I trial. Lancet Oncol 9:533–542. https://doi.org/10.1016/S1470-2045(08)70107-4

    Article  CAS  PubMed  Google Scholar 

  • Parungo CP, Ohnishi S, Kim SW, Kim S, Laurence RG, Soltesz EG et al (2005) Intraoperative identification of esophageal sentinel lymph nodes with nearinfrared fluorescence imaging. J Thorac Cardiovasc Surg 129:844–850

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel B, Das S, Prakash R, Yasir M (2010) Natural bioactive compound with anticancer potential. Int J Advan Pharmaceut Sci 1:32–41

    CAS  Google Scholar 

  • Pereira DIA, Bruggraber F, Poots LK, Tagmount MA, Aslam MF, Frazer DM, Vulpe CD, Anderson GJ, Powell JJ (2014) Nanoparticulate iron(III) oxohydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine 10(8):1877–1886

    Article  CAS  PubMed  Google Scholar 

  • Perrino E, Steiner M, Krall N, Bernardes GJL, Pretto F et al (2014) Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids. Cancer Res 74:2569–2578

    Article  CAS  PubMed  Google Scholar 

  • Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M et al (2011) A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104:593–598. https://doi.org/10.1038/bjc.2011.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad E, Kenneth R, Shang JW, Kose MA (2003) The effects of financial globalization on developing countries: Some empirical evidence. IMF Occasional Paper no. 220. International Monetary Fund, Washington, DC

    Google Scholar 

  • Reimer P, Tombach B (1998) Hepatic MRI with SPIO: Detection and characterization of focal liver lesions. Eur Radiol 8:1198–1204

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572

    Article  CAS  PubMed  Google Scholar 

  • Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ et al (2002) Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol 20:1668–1676

    Article  CAS  PubMed  Google Scholar 

  • Seymour LW, Ferry DR, Kerr DJ, Rea D, Whitlock M et al (2009) Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol 34:1629–1636

    Article  CAS  PubMed  Google Scholar 

  • Shim MS, Kwon YJ (2012) Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev 64:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Shubayev VI, Pisanic TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61(6):467–477. 1872-8294 (Electronic), 0169409X (Linking)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith HF, Woerdenbag HJ, Singh RH, Meulenbeld GJ, Labadie RP, Zwaving JH (1995) Ayurvedic herbal drugs with possible cytostatic activity. J Ethnopharmacol 47:75–84

    Article  Google Scholar 

  • Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A et al (2005) Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin- bound paclitaxel (ABI-007) and paclitaxel formulated in Crem- ophor (Taxol). Clin Cancer Res 11:4136–4143

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Ranganathan B, Feng SS (2008) Multifunctional poly(D, L-lactide-coglycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 29:475–486

    Article  PubMed  CAS  Google Scholar 

  • Suresh P, Sangdun C (2014) Nanoinformatics: emerging databases and available tools. Int J of Mol Sci 15:7158–7182

    Article  CAS  Google Scholar 

  • Tharushi RS, Udawatte C, Ratnaweera CN (2017) An in-silico approach to study the binding interaction of coumarin derivatives to aromatase. 4th Ann Cong Drug Dis Design 6(3):34

    Google Scholar 

  • Thatte U, Dhahanukar S (1991) Ayurveda, the natural alternative. Sci Today 2001:12–18

    Google Scholar 

  • Tong R, Langer R (2015) Nanomedicines targeting the tumor microenvironment. Cancer J 21(4):314–321

    Article  CAS  PubMed  Google Scholar 

  • Tsigelny IF, Simberg D (2011) Has the time for in silico design of nanomedicines finally arrived? Nanomed & Biothera Dis 1(2):1–2

    Google Scholar 

  • Vähä-Koskela MJV, Heikkilä JE, Hinkkanen AE (2007) Oncolytic viruses in cancer therapy. Cancer Lett 254:178–216. https://doi.org/10.1016/j.canlet.2007.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valle JW, Armstrong A, Newman C, Alakhov V, Pietrzynski G et al (2011) A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs 29:1029–1037. https://doi.org/10.1007/s10637-010-9399-1

    Article  CAS  PubMed  Google Scholar 

  • Varallyay P, Nesbit G, Muldoon LL, Nixon RR, Delashaw J, Cohen JI et al (2002) Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am J Neuroradiol 23:510–−519

    PubMed  PubMed Central  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    Article  CAS  PubMed  Google Scholar 

  • Von Hoff DD, Mita MM, Ramanathan RK, Weiss GJ, Mita AC et al (2016) Phase I study of PSMA-targeted Docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 22(13):3157–3163

    Article  CAS  Google Scholar 

  • Wang C, Ho PC, Lim LY (2010) Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells. Int J Pharm 400:201–210

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Sun Y, Liu Y, Meng F, Lee RJ (2018) Clinical translation of immunoliposomes for cancer therapy: Recent perspectives. Expert Opin Drug Deliv 15(9):893–903

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  CAS  PubMed  Google Scholar 

  • Weiss GJ, Chao J, Neidhart JD, Ramanathan RK, Bassett D et al (2013) First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymercamptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest New Drugs 31:986–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicki A, Rochlitz C, Orleth A, Ritschard R, Albrecht I, Herrmann R et al (2012) Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res 18:454–464

    Article  CAS  PubMed  Google Scholar 

  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Regino CA, Koyama Y, Hama Y, Gunn AJ, Bernardo M et al (2007) Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjug Chem 18:1474–1482

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen Q, Li S, Ma W, Yao G et al (2018) iRGD-mediated and enzyme-induced precise targeting and retention of gold nanoparticles for the enhanced imaging and treatment of breast cancer. J Biomed Nanotechnol 14(8):1396–1408

    Article  CAS  PubMed  Google Scholar 

  • Yeh TK, Lu Z, Wientjes MG, Au JLS (2005) Formulating paclitaxel in nanoparticles alters its disposition. Pharm Res 22:867–874

    Article  CAS  PubMed  Google Scholar 

  • Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD et al (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 30:2183–2189. https://doi.org/10.1200/JCO.2011.38.0410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trivedi, M., Johri, P., Singh, A., Singh, R., Tiwari, R.K. (2020). Latest Tools in Fight Against Cancer: Nanomedicines. In: Saxena, S., Khurana, S. (eds) NanoBioMedicine. Springer, Singapore. https://doi.org/10.1007/978-981-32-9898-9_6

Download citation

Publish with us

Policies and ethics