Skip to main content

Nanomedicine in Cancer Stem Cell Therapy

  • Chapter
  • First Online:
NanoBioMedicine

Abstract

It is now well established that most of the tumors are heterogeneous in nature that comprise a population of cancer stem cells (CSCs) and differentiated cancer cells. Like normal stem cells, CSCs have also self-renewal, proliferation, and differentiation capacities that are responsible for the development of drug resistance and relapse. Therefore, targeting CSCs is essential for the elimination of tumor recurrence condition. Although several anti-CSC therapeutics have been used in clinics, they are found to have limited efficacy due to poor solubility, lesser stability, and short circulation time in the blood. Therefore, tools in nanomedicines are being used to tackle these limitations. Recently, nanodrug carriers have been used to target CSCs and somewhat eliminate drug resistance by targeting CSC metabolism, inhibiting drug transporters, disturbing CSC survival pathways, etc. Even with these progress, the challenges for targeting CSCs by nanomedicines still remain and open up plenty of space for further development and improvement in synthesizing drug carriers with higher efficacy. In this chapter, we summarize about CSCs and their biological characterization toward resistance, then discuss several anti-CSC therapeutic approaches based on nanomedicines in the current state of research and development, and finally overview their future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A et al (2017) Isolation, identification, and characterization of cancer stem cells: a review. J Cell Physiol 232(8):2008–2018

    Article  CAS  PubMed  Google Scholar 

  • Al Faraj A, Shaik AS, Ratemi E, Halwani R (2016) Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J Control Release 225:240–251

    Article  PubMed  CAS  Google Scholar 

  • Alibolandi M, Ramezani M, Sadeghi F, Abnous K, Hadizadeh F (2015) Epithelial cell adhesion molecule aptamer conjugated PEG–PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharm 479(1):241–251

    Article  CAS  PubMed  Google Scholar 

  • Alshaer W, Hillaireau H, Vergnaud J, Ismail S, Fattal E (2014) Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjug Chem 26(7):1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Ang WX, Li Z, Chi Z, Du SH, Chen C, Tay JC et al (2017) Intraperitoneal immunotherapy with T cells stably and transiently expressing anti-EpCAM CAR in xenograft models of peritoneal carcinomatosis. Oncotarget 8(8):13545

    Article  PubMed  PubMed Central  Google Scholar 

  • Atena M, Reza AM, Mehran G (2014) A review on the biology of cancer stem cells. Stem Cell Discovery 4(04):83–89

    Article  CAS  Google Scholar 

  • Barenholz YC (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  • Burke AR, Singh RN, Carroll DL, Wood JC, D’Agostino RB, Ajayan PM et al (2012) The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 33(10):2961–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhardt JK, Hofstetter CP, Santillan A, Shin BJ, Foley CP et al (2012) Orthotopic glioblastoma stem-like cell xenograft model in mice to evaluate intra-arterial delivery of bevacizumab: from bedside to bench. J Clin Neurosci 19(11):1568–1572

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Fang L, Huang Y, Li R, Xu X, Hu Z et al (2017) Simultaneous overactivation of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers chemoresistance-associated metastasis in NSCLC. Nat Commun 8:15870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZG (2010) Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med 16(12):594–602

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Huang YH, Chen JL (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34(6):732–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenna V, Hu C, Pramanik D, Aftab BT, Karikari C, Campbell NR et al (2012) A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to smoothened antagonists. Mol Cancer Ther 11(1):165–173

    Article  CAS  PubMed  Google Scholar 

  • Clement V, Sanchez P, De Tribolet N, Radovanovic I, Altaba AR (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa S, Binato R, Du Rocher B, Castelo-Branco MT, Pizzatti L, Abdelhay E (2012) Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC Cancer 12(1):303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz LJ, Tacken PJ, Rueda F, Carles Domingo J, Albericio F, Figdor CG (2012) 8 targeting nanoparticles to dendritic cells for immunotherapy. Methods Enzymol 509:143e163

    Google Scholar 

  • Cui J, Jiang W, Wang S, Wang L, Xie K (2012) Role of Wnt/β-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des 18(17):2464–2471

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Pu X, Huang M, Xiao J, Zhou J, Lin T, Lin EH (2010) 5-Fluorouracil upregulates the activity of Wnt signaling pathway in CD133-positive colon cancer stem-like cells. Chin J Cancer 29(9):810–815

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Wu Y, Ma W, Zhang S, Zhang YQ (2015) Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol 16(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C (2013) Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7(6):5091–5101

    Article  CAS  PubMed  Google Scholar 

  • Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M (2015) Therapies targeting cancer stem cells: current trends and future challenges. World J Stem Cells 7(9):1185–1201

    PubMed  PubMed Central  Google Scholar 

  • Duarte S, Momier D, Baqué P, Casanova V, Loubat A, Samson M et al (2013) Preventive Cancer stem cell-based vaccination reduces liver metastasis development in a rat Colon carcinoma syngeneic model. Stem Cells 31(3):423–432

    Article  CAS  PubMed  Google Scholar 

  • Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67(5):2187–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmann G, Fendrich V, McGovern K, Bedja D, Bisht S et al (2008) An orally bioavailable small-molecule inhibitor of hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 7(9):2725–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer M, Yen WC, Kapoun AM, Wang M, O’Young G et al (2011) Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations. Cancer Res 71(5):1520–1525

    Article  CAS  PubMed  Google Scholar 

  • Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67(8):3560–3564

    Article  CAS  PubMed  Google Scholar 

  • Ganesh S, Iyer AK, Morrissey DV, Amiji MM (2013) Hyaluronic acid based self- assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 34(13):3489–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Luo Y, Wang Y, Pang J, Liao C, Lu H, Fang Y (2012) Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. Int J Nanomedicine 7:4037–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gener P, Gouveia LP, Sabat GR, de Sousa Rafael DF, Fort NB, Arranja A et al (2015) Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells. Nanomedicine 11(8):1883–1892

    Article  CAS  PubMed  Google Scholar 

  • Gilboa-Geffen A, Hamar P, Le M, Wheeler LA, Trifonova R, Petrocca F et al (2015) Gene knockdown by EpCAM aptamer-siRNA chimeras suppresses epithelial breast cancers and their tumor-initiating cells. Mol Cancer Ther, Molcanther-0201

    Google Scholar 

  • Goodison S, Urquidi V, Tarin D (1999) CD44 cell adhesion molecules. Mol Pathol 52(4):189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15(9):1010–1012

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Li C, Wang Y, Lv H, Guo Y et al (2013) Cytokine-induced killer (CIK) cells bound with anti-CD3/anti-CD133 bispecific antibodies target CD133 high cancer stem cells in vitro and in vivo. Clin Immunol 149(1):156–168

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Kang X, Zhao M (2017) A forecast of targeting leukemia stem cells by Nanomedicine. J Stem Cell Res Ther 7(385):2

    Google Scholar 

  • Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Jin C, Yang Z, Yang J, Li H, He Y, An J et al (2014) Paclitaxel-loaded nanoparticles decorated with anti-CD133 antibody: a targeted therapy for liver cancer stem cells. J Nanopart Res 16(1):2157

    Article  CAS  Google Scholar 

  • Kale AA, Torchilin VP (2010) Environment-responsive multifunctional liposomes. Liposomes Methods Protocols 1:213–242

    Article  CAS  Google Scholar 

  • Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6(11):8788

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanwar JR, Mahidhara G, Roy K, Sasidharan S, Krishnakumar S, Prasad N et al (2015) Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine 10(1):35–55

    Article  CAS  PubMed  Google Scholar 

  • Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SS, Rait A, Kim E, Pirollo KF, Nishida M et al (2014) A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano 8(6):5494–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49(36):6288–6308

    Article  CAS  Google Scholar 

  • Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227(2):421–430

    Article  CAS  PubMed  Google Scholar 

  • Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y et al (2015) miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 29(7):732–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause M, Dubrovska A, Linge A, Baumann M (2016) Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev:30052–30057

    Google Scholar 

  • Kwiatkowska-Borowczyk EP, Gąbka-Buszek A, Jankowski J, Mackiewicz A (2015) Immunotargeting of cancer stem cells. Contemp Oncol 19(1A):A52

    Google Scholar 

  • Lee H, Fonge H, Hoang B, Reilly RM, Allen C (2010) The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharm 7(4):1195–1208

    Article  CAS  PubMed  Google Scholar 

  • Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G et al (2011) Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 29(11):1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Xiang D, Shigdar S, Yang W, Li Q, Lin J et al (2014) Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int J Nanomedicine 9:1083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG (2011) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Therapy 11(5):464–473

    Article  CAS  Google Scholar 

  • Liu C, Zhao G, Liu J, Ma N, Chivukula P et al (2009) Novel biodegradable lipid nano complex for siRNA delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J Control Release 140(3):277–283

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Cheng W, Lai D, Huang Y, Guo L (2010) Characterization of primary ovarian cancer cells in different culture systems. Oncol Rep 23(5):1277–1284

    CAS  PubMed  Google Scholar 

  • Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y et al (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep 2(1):78–91

    Article  CAS  Google Scholar 

  • Liu J, Meng T, Yuan M, Wen L, Cheng B et al (2016) MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 11:6713–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY (2008) CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27(12):1749–1758

    Article  CAS  PubMed  Google Scholar 

  • Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y et al (2016) Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165(1):45–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marangoni E, Lecomte N, Durand L, De Pinieux G, Decaudin D, Chomienne C et al (2009) CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts. Br J Cancer 100(6):918–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markovsky E, Vax E, Ben-Shushan D, Eldar-Boock A, Shukrun R, Yeini E et al (2017) Wilms tumor NCAM-expressing Cancer stem cells as potential therapeutic target for polymeric Nanomedicine. Mol Cancer Ther 16(11):2462–2472

    Article  CAS  PubMed  Google Scholar 

  • Matsui WH (2016) Cancer stem cell signaling pathways. Medicine 95:S8–S19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan PM, Simedrea C, Ribot EJ, Foster PJ, Palmieri D et al (2011) Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer. Mol Cancer Res 9(7):834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeeley KM, Annapragada A, Bellamkonda RV (2007) Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma. Nanotechnology 18(38):385101

    Article  CAS  Google Scholar 

  • Mishra S, Webster P, Davis ME (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83(3):97–111

    Article  CAS  PubMed  Google Scholar 

  • Mittal V (2004) Improving the efficiency of RNA interference in mammals. Nat Rev Genet 5:355–365

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DN, Mahon KP, Chikh G, Kim P, Chung H, Vicari AP et al (2012) Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc Natl Acad Sci 109(14):E797–E803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niero EL, Rocha-Sales B, Lauand C, Cortez BA, de Souza MM et al (2014) The multiple facets of drug resistance: one history, different approaches. J Exp Clin Cancer Res 33(1):33–37

    Article  CAS  Google Scholar 

  • Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Yet J et al (2012) Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res 72(7):1853–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning ST, Lee SY, Wei MF, Peng CL, Lin SYF, Tsai MH et al (2016) Targeting colorectal Cancer stem-like cells with anti-CD133 antibody-conjugated SN-38 nanoparticles. ACS Appl Mater Interfaces 8(28):17793–17804

    Article  CAS  PubMed  Google Scholar 

  • Pastor F, Kolonias D, McNamara JO II, Gilboa E (2011) Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol Ther 19(10):1878–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4(5):a008052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao W, Bellotti A, Littrup PJ, Yu J, Lu X, He X (2014) Nanoparticle-encapsulated doxorubicin enhances cryoablation of cancer stem-like cells. Technology 2(01):28–35

    Article  Google Scholar 

  • Rink JS, Plebanek MP, Tripathy S, Thaxton CS (2013) Update on current and potential nanoparticle cancer therapies. Curr Opin Oncol 25(6):646–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadhukha T, Niu L, Wiedmann TS, Panyam J (2013) Effective elimination of cancer stem cells by magnetic hyperthermia. Mol Pharm 10(4):1432–1441

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Xia JX, Wang J (2016) Nanomedicine-mediated cancer stem cell therapy. Biomaterials 74:1–18

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Han L, Gong T, Zhang Z, Sun X (2013) Systemic delivery of microRNA-34a for cancer stem cell therapy. Angew Chem Int Ed 52(14):3901–3905

    Article  CAS  Google Scholar 

  • Shima F, Akagi T, Uto T, Akashi M (2013) Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly (γ-glutamic acid) nanoparticles. Biomaterials 34(37):9709–9716

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Settleman JEMT (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skubitz AP, Taras EP, Boylan KL, Waldron NN, Oh S et al (2013) Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecol Oncol 130(3):579–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DC, Eisenberg PD, Manikhas G, Chugh R, Gubens MA, Stagg RJ et al (2014) A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res 20(24):6295–6303

    Article  CAS  PubMed  Google Scholar 

  • Stratford EW, Bostad M, Castro R, Skarpen E, Berg K, Høgset A et al (2013) Photochemical internalization of CD133-targeting immunotoxins efficiently depletes sarcoma cells with stem-like properties and reduces tumorigenicity. Biochim Biophys Acta (BBA)- Gen Subj 1830(8):4235–4243

    Article  CAS  Google Scholar 

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014a) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53(46):12320–12364

    CAS  Google Scholar 

  • Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y (2014b) Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther-Nucleic Acids 3:e182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun TM, Wang YC, Wang F, Du JZ, Mao CQ, Sun CY et al (2014c) Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials 35(2):836–845

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B et al (2014d) Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater 26(45):7615–7621

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Liu Y, Li SY, Shen S, Du XJ, Xu CF et al (2015) Co-delivery of all-trans retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 37:405–414

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan SK, Roger E, Toti U, Niu L, Ohlfest JR, Panyam J (2013) CD133- targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Release 171(3):280–287

    Article  CAS  PubMed  Google Scholar 

  • Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn et al (2015) Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nature Reviews Clinical Oncology 12(8):445–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda M (2013) Glioma stem cells and immunotherapy for the treatment of malignant gliomas. ISRN Oncology, 2013. 673793

    Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS- mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen L, Felipe De Sousa EM, Van Der Heijden M, Cameron K, De Jong JH et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476

    Article  CAS  PubMed  Google Scholar 

  • Villegas VE, Rondon-Lagos M, Annaratone L, Castellano I, Grismaldo A, Sapino A et al (2016) Tamoxifen treatment of breast cancer cells: impact on hedgehog/GLI1 signaling. Int J Mol Sci 17(3):308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 7(4):597–615

    Article  CAS  PubMed  Google Scholar 

  • Wang CH, Chiou SH, Chou CP, Chen YC, Huang YJ, Peng CA (2011) Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine 7(1):69–79

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sullenger BA, Rich JN (2012a) Notch signaling in cancer stem cells. Springer, (Chapter 13)

    Google Scholar 

  • Wang L, Su W, Liu Z, Zhou M, Chen S, Chen Y et al (2012b) CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials 33(20):5107–5114

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sefah K, Altman MB, Chen T, You M, Zhao Z et al (2013) Aptamer-conjugated Nanorods for targeted Photothermal therapy of prostate Cancer stem cells. Chem Asian J 8(10):2417–2422

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Jung YS, Jun S, Lee S, Wang W, Schneider A et al (2016) PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun 7:10633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Senanayake TH, Warren G, Vinogradov SV (2013) Hyaluronic acid-based nanogel–drug conjugates with enhanced anticancer activity designed for the targeting of CD44- positive and drug-resistant tumors. Bioconjug Chem 24(4):658–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Crawford M, Yu B, Mao Y, Nana-Sinkam SP, Lee LJ (2011) MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol Pharm 8(4):1381–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia P (2014) Surface markers of cancer stem cells in solid tumors. Curr Stem Cell Res Ther 9(2):102–111

    Article  CAS  PubMed  Google Scholar 

  • Xiang D, Zheng C, Zhou SF, Qiao S, Tran PHL, Pu C et al (2015) Superior performance of aptamer in tumor penetration over antibody: implication of aptamer-based theranostics in solid tumors. Theranostics 5(10):1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Chenna V, Hu C, Sun HX, Khan M, Bai H et al (2011) A polymeric nanoparticle encapsulated hedgehog pathway inhibitor HPI-1 (NanoHHI) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res, clincanres-0950

    Google Scholar 

  • Xu Y, Wang J, Li X, Liu Y, Dai L, Wu X, Chen C (2014) Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia. Biomaterials 35(16):4667–4677

    Article  CAS  PubMed  Google Scholar 

  • Xu ZY, Tang JN, Xie HX, Du YA, Huang L, Yu PF, Cheng XD (2015a) 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells. Int J Biol Sci 11(3):284–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu CF, Liu Y, Shen S, Zhu YH, Wang J (2015b) Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials 51:1–11

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Xiong F, Dou J, Xue J, Zhan X, Shi F et al (2015) Target therapy of multiple myeloma by PTX-NPs and ABCG2 antibody in a mouse xenograft model. Oncotarget 6(29):27714

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q (2012a) The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 33(2):679–691

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yao HJ, Yu Y, Zhang Y, Li RJ, Ju RJ et al (2012b) Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials 33(2):565–582

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Sun H, Zhao F, Lu P, Ge C, Li H et al (2012c) BMP4 administration induces differentiation of CD133+ hepatic cancer stem cells, blocking their contributions to hepatocellular carcinoma. Cancer Res 72(16):4276–4285

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458(7239):776–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Alakhova DY, Kabanov AV (2013a) Can nanomedicines kill cancer stem cells? Adv Drug Deliv Rev 65(13):1763–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao N, You J, Zeng Z, Li C, Zu Y (2013b) An ultra pH-sensitive and Aptamer- equipped Nanoscale drug-delivery system for selective killing of tumor cells. Small 9(20):3477–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Yang J, Kopeček J (2012) Selective inhibitory effect of HPMA copolymer- cyclopamine conjugate on prostate cancer stem cells. Biomaterials 33(6):1863–1872

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Prasad S, Gaedicke S, Hettich M, Firat E, Niedermann G (2015) Patient- derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57. Oncotarget 6(1):171–184

    PubMed  Google Scholar 

  • Zuo ZQ, Chen KG, Yu XY, Zhao G, Shen S et al (2016) Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials 82:48–59

    Article  CAS  PubMed  Google Scholar 

  • Zuris ZA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH et al (2014) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Shanker Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, P.K., Dharanivasan, G., Misra, R., Gupta, S., Verma, R.S. (2020). Nanomedicine in Cancer Stem Cell Therapy. In: Saxena, S., Khurana, S. (eds) NanoBioMedicine. Springer, Singapore. https://doi.org/10.1007/978-981-32-9898-9_4

Download citation

Publish with us

Policies and ethics