Skip to main content

Antibody-Targeted Nanoparticles for Cancer Treatment

  • Chapter
  • First Online:
NanoBioMedicine

Abstract

One of the major scientific breakthroughs of the twenty-first century would be the field of nanotechnology and more specifically the use of engineered nanoparticles in the area of healthcare. These tiny structures of less than 100 nm have the ability to be conjugated to drugs, antibodies, or other chemical compounds, leading to their targeted delivery to the cells of interest. With the improvement in healthcare, the average lifespan has increased; however, advancing age has also led to the higher incidence of various diseases such as cancer. Therapeutics which can effectively halt the progress of this disease is the need of the hour. In this chapter we have given an overview of the recent advances in nanoparticles conjugated to antibodies for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelghany SM, Schmid D, Deacon J et al (2013) Enhanced antitumor activity of the photosensitizer meso-tetra(N-methyl- 4-pyridyl) porphine tetratosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules 14(2):302–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2009.03.010

  • Aires A, Ocampo SM, Simões BM, Rodríguez MJ, Cadenas JF, Couleaud P, Spence K, Latorre A, Miranda R, Somoza Á (2016) Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology 27:065103

    Article  PubMed  CAS  Google Scholar 

  • Alexander CM, Maye MM, Dabrowiak JC (2011) DNA-capped nanoparticles designed for doxorubicin drug delivery. Chem Commun. https://doi.org/10.1039/c0cc04916f

  • Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1(1):10–29. Epub 2016/06/03

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashton JR, Gottlin EB, Patz EF Jr, West JL, Badea CT (2018) A comparative analysis of EGFR-targeting antibodies for gold nanoparticle CT imaging of lung cancer. PLoS One 13(11):e0206950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol. https://doi.org/10.1038/nnano.2009.242

  • Barua S, Yoo JW, Kolhar P et al (2013) Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A 110(9):3270–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. Epub 2013/11/26. https://doi.org/10.1016/j.addr.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  • Bhuvaneswari R, Gan YY, Soo KC, Olivo M (2009) Targeting EGFR with photodynamic therapy in combination with Erbitux enhances in vivo bladder tumor response. Mol Cancer 8:94. Epub 2009/11/03

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boons GJ (2010) Liposomes modified by carbohydrate ligands can target B cells for the treatment of B-cell lymphomas. Expert Rev Vaccines 9(11):1251–1256. Epub 2010/11/20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408–1416

    CAS  PubMed  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626. Epub 2008/10/09

    Article  CAS  PubMed  Google Scholar 

  • Çağdaş M, Sezer AD, Bucak S (2014) Liposomes as potential drug carrier systems for drug delivery. In: Application of nanotechnology in drug delivery. https://doi.org/10.5772/58459

    Chapter  Google Scholar 

  • Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M (2014) Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine 2014:3719–3735

    Article  CAS  Google Scholar 

  • Carter T, Mulholland P, Chester K (2016) Antibody-targeted nanoparticles for cancer treatment. Immunotherapy 8(8):941–958. Epub 2016/07/07

    Article  CAS  PubMed  Google Scholar 

  • Chae SW, Sohn JH, Kim DH et al (2011) Overexpressions of cyclin B1, cdc2, p16 and p53 in human breast cancer: the clinicopathologic correlations and prognostic implications. Yonsei Med J. https://doi.org/10.3349/ymj.2011.52.3.445

  • Chang PY, Peng SF, Lee CY, Lu CC, Tsai SC, Shieh TM et al (2013) Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol 43:1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Chen ZP, Peng ZF, Zhang P, Jin XF, Jiang JH, Zhang XB, Shen GL, Yu RQ (2007) A sensitive immunosensor using colloidal gold as electrochemical label. Talanta 72(5):1800–1804

    Article  CAS  PubMed  Google Scholar 

  • Chen WC, Completo GC, Sigal DS, Crocker PR, Saven A, Paulson JC (2010) In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood 115(23):4778–4786. Epub 2010/02/26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Ma K, Madajewski B, Zhuang L, Zhang L, Rickert K et al (2018) Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2- overexpressing breast cancer. Nat Commun 9(1):4141. Epub 2018/10/10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F (2007) Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Int J Pharm 331(2):190–196. Epub 2007/01/02

    Article  CAS  PubMed  Google Scholar 

  • Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C (2016) Targeted nanoparticles for colorectal cancer. Nanomedicine 11(18):2443–2456. Epub 2016/08/17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crucho CIC, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2017.06.004

  • Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668. Epub 2009/03/10

    Article  CAS  PubMed  Google Scholar 

  • Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14:282–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinauer N, Balthasar S, Weber C, Kreuter J, Langer K, von Briesen H (2005) Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials 26(29):5898–5906

    Article  CAS  PubMed  Google Scholar 

  • Dixit N, Vaibhav K, Pandey RS, Jain UK, Katare OP, Katyal A et al (2015) Improved cisplatin delivery in cervical cancer cells by utilizing folate-grafted non-aggregated gelatin nanoparticles. Biomed Pharmacother 69:1–10. Epub 2015/02/11

    Article  CAS  PubMed  Google Scholar 

  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science (80-). https://doi.org/10.1126/science.1077194

  • Dubey P, Matai I, Kumar SU, Sachdev A, Bhushan B, Gopinath P (2015) Perturbation of cellular mechanistic system by silver nanoparticle toxicity: cytotoxic, genotoxic and epigenetic potentials. Adv Colloid Interface Sci 221:4–21

    Article  CAS  PubMed  Google Scholar 

  • Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945. Epub 2007/03/06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbayoumi TA, Torchilin VP (2008) Tumor-specific antibody mediated targeted delivery of Doxil reduces the manifestation of auricular erythema side effect in mice. Int J Pharm 357(1–2):272–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834. https://doi.org/10.1021/nl050074e

    Article  CAS  PubMed  Google Scholar 

  • FDA approved therapeutic antibody for cancer. https://www.fda.gov/Drugs/default.htm

  • Ferrara N, Gerber H-P, LeCouter J, Kerbel RS (2003) Angiogenesis as a therapeutic target. Nature. https://doi.org/10.1038/nature04483

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171. Epub 2005/03/02

    Article  CAS  PubMed  Google Scholar 

  • Florence AT, Hussain N (2001) Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv Drug Deliv Rev. https://doi.org/10.1016/S0169-409X(01)00184-3

  • Fonge H, Lee H, Reilly RM, Allen C (2010) Multifunctional block copolymer micelles for the delivery of 111In to EGFR-positive breast cancer cells for targeted Auger electron radiotherapy. Mol Pharm 7(1):177–186. Epub 2009/11/21

    Article  CAS  PubMed  Google Scholar 

  • Ghosh SC, Neslihan Alpay S, Klostergaard J (2012) CD44: a validated target for improved delivery of cancer therapeutics. Expert Opin Ther Targets 16:635–650

    Article  CAS  PubMed  Google Scholar 

  • Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J (1972) Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. https://doi.org/10.1084/jem.136.2.261

  • Glazer ES, Curley SA (2010) Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles. Cancer 116(13):3285–3293. https://doi.org/10.1002/cncr.25135

    Article  CAS  PubMed  Google Scholar 

  • Gonda K, Watanabe TM, Ohuchi N, Higuchi H (2010) In vivo nano-imaging of membrane dynamics in metastatic tumor cells using quantum dots. J Biol Chem. https://doi.org/10.1074/jbc.M109.075374

  • Grivennikov SI, Greten FR, Immunity KM (2010) Inflammation and Cancer. Cell. https://doi.org/10.1016/j.cell.2010.01.025

  • Ha SW, Jang HL, Nam KT, Beck GR Jr (2015) Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 65:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber DA, Gray NS, Baselga J (2011) The evolving war on cancer. Cell. https://doi.org/10.1016/j.cell.2011.03.026

  • Hamalya MA, Abulateefeha SR, Al-Qaoudb KM, Alkilanya AM (2018) Freeze-drying of monoclonal antibody-conjugated gold nanorods: colloidal stability and biological activity. Int J Pharm 550:269–277

    Article  CAS  Google Scholar 

  • Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. https://doi.org/10.1016/j.ccr.2012.02.022

  • Hanahan D, Weinberg RA (2011) Review hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  • Haugsten EM, Wiedlocha A, Olsnes S, Wesche J (2010) Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 8(11):1439–1452. Epub 2010/11/05

    Article  CAS  PubMed  Google Scholar 

  • Heinrich MC, Blanke CD, Druker BJ, Corless CL (2002) Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol. https://doi.org/10.1200/JCO.20.6.1692

  • Heinzle C, Sutterluty H, Grusch M, Grasl-Kraupp B, Berger W, Marian B (2011) Targeting fibroblast-growth-factor-receptor-dependent signaling for cancer therapy. Expert Opin Ther Targets 15(7):829–846. Epub 2011/03/08

    Article  CAS  PubMed  Google Scholar 

  • Honeychurch J, Cheadle EJ, Dovedi SJ, Illidge TM (2015) Immuno-regulatory antibodies for the treatment of cancer. Expert Opin Biol Ther. https://doi.org/10.1517/14712598.2015.1036737

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of Immunotargeted gold nanoparticles. Photochem Photobiol. https://doi.org/10.1562/2005-12-14-RA-754

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med. https://doi.org/10.1038/nm0603-685

  • Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. https://doi.org/10.1038/nrclinonc.2010.139

  • Jarboe J, Gupta A, Saif W (2014) Therapeutic human monoclonal antibodies against cancer. Methods Mol Biol. https://doi.org/10.1007/978-1-62703-586-6_4

  • Jiang Z, Yang Z, Li F, Li Z, Fishkin N, Burgess K (2018) Targeted maytansinoid conjugate improves therapeutic index for metastatic breast cancer cells. Bioconjug Chem 29(9):2920–2926. Epub 2018/08/14

    Article  CAS  PubMed  Google Scholar 

  • Joensuu H, Dimitrijevic S (2001) Tyrosine kinase inhibitor imatinib (STI571) as an anticancer agent for solid tumours. Ann Med. https://doi.org/10.3109/07853890109002093

  • Kah JC, Kho KW, Lee CG et al (2007) Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomedicine 2(4):785–798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanazaki K, Sano K, Makino A, Shimizu Y, Yamauchi F, Ogawa S et al (2015) Development of anti-HER2 fragment antibody conjugated to iron oxide nanoparticles for in vivo HER2- targeted photoacoustic tumor imaging. Nanomedicine 11(8):2051–2060. Epub 2015/08/05

    Article  CAS  PubMed  Google Scholar 

  • Karkkainen MJ, Makinen T, Alitalo K (2002) Lymphatic endothelium: a new frontier in metastasis research. Nat Cell Biol 4:E2–E5. https://doi.org/10.1038/ncb0102-e2

    Article  CAS  PubMed  Google Scholar 

  • Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med. https://doi.org/10.1016/j.nano.2010.05.005

  • Kim BYS, Rutka JT, Chan WCW (2010) Ph D. nanomedicine. N Engl J Med. https://doi.org/10.1056/NEJMra0912273

  • King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science (80-). https://doi.org/10.1126/science.2992089

  • Korb ML, Hartman YE, Kovar J, Zinn KR, Bland KI, Rosenthal EL (2014) Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer. J Surg Res 188(1):119–128. Epub 2013/12/24

    Article  CAS  PubMed  Google Scholar 

  • Koren E, Apte A, Jani A, Torchilin VP (2012) Multifunctional PEGylated 2C5-immunoliposomes containing pHsensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 160(2):264–273

    Article  CAS  PubMed  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Chaudhry Q (2010) A complementary definition of nanomaterial. Nano Today. https://doi.org/10.1016/j.nantod.2010.03.004

  • Kubota T et al (2018) HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomedicine: NBM 14:1919–1929. https://doi.org/10.1016/j.nano.2018.05.019

    Article  CAS  Google Scholar 

  • Kumar S, Aaron J, Sokolov K (2008) Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc 3(2):314–320

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Liang CT (2011) Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 32(12):3340–3350. Epub 2011/02/08

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Wang IH (2016) Enhanced delivery of etoposide across the blood-brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles. J Drug Target 24(7):645–654. https://doi.org/10.3109/1061186X.2015.1132223. Epub 2016 Jan 15

    Article  CAS  PubMed  Google Scholar 

  • Kwon I, Kato M, Xiang S et al (2014) Phosphorylation-regulated binding of RNA polymerase ii to fibrous polymers of low-complexity domains. Cell. https://doi.org/10.1016/j.cell.2014.01.002

  • Langdon SP, Sims AH (2016) HER2-targeted antibody treatment for ovarian cancer future opportunities. J Mol Pharm Org Process Res 4:1

    Article  Google Scholar 

  • Leal M, Sapra P, Hurvitz SA et al (2014) Antibody-drug conjugates: an emerging modality for the treatment of cancer. Ann N Y Acad Sci. https://doi.org/10.1111/nyas.12499

  • Li J, Ng CK (2012) Methods for nanoparticle conjugation to monoclonal antibodies. In: Pathak Y, Benita S (eds) Antibody-mediated drug delivery systems. John Wiley & Sons, Inc, Hoboken, pp 191–207

    Chapter  Google Scholar 

  • Liao C, Sun Q, Liang B, Shen J, Shuai X (2011) Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80(3):699–705. Epub 2010/09/03

    PubMed  Google Scholar 

  • Lin PC, Chen SH, Wang KY, Chen ML, Adak AK, Hwu JR, Chen YJ, Lin CC (2009) Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application. Anal Chem 81(21):8774–8782

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Ng HL, Pan W, Chen H, Zhang G, Bian Z et al (2015) Exploring different strategies for efficient delivery of colorectal cancer therapy. Int J Mol Sci 16(11):26936–26952. Epub 2015/11/17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li K, Liu B, Feng SS (2010) A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 31(35):9145–9155

    Article  CAS  PubMed  Google Scholar 

  • Louka M, Boutou E, Bakou V, Pappa V, Georgoulis A, Stürzbecher H-W, Vorgias CE, Vlachodimitropoulos D (2015) DNA damage response/repair in cancer stem cells—potential vs. controversies, advances in DNA repair. IntechOpen, Arizona. https://doi.org/10.5772/61355

  • Lutz RJ (2015) Targeting the folate receptor for the treatment of ovarian cancer. Transl Cancer Res 4(1):118–126

    CAS  Google Scholar 

  • Makaraviciute A, Ramanaviciene A (2013) Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 50:460–471

    Article  CAS  PubMed  Google Scholar 

  • Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. https://doi.org/10.1016/j.tips.2009.08.004

  • Manjappa AS, Chaudhari KR, Venkataraju MP et al (2011) Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J Control Release 150(1):2–22

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature. https://doi.org/10.1038/nature07205

  • Master AM, Sen Gupta A (2012) EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine 7(12):1895–1906. Epub 2012/12/20

    Article  CAS  PubMed  Google Scholar 

  • Mattheolabakis G, Rigas B, Constantinides PP (2012) Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine. https://doi.org/10.2217/nnm.12.128

  • Morishita M, Peppas NA (2006) Is the oral route possible for peptide and protein drug delivery? Drug Discov Today 11:905–910

    Article  CAS  PubMed  Google Scholar 

  • Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41:2539–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadda M, Tullayakorn P, Kesara NB (2018) Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine 13:3921–3935

    Google Scholar 

  • Naves LB, Dhand C, Venugopal JR, Rajamani L, Ramakrishna S, Almeida L (2017) Nanotechnology for the treatment of melanoma skin cancer. Prog Biomater 6(1–2):13–26. Epub 2017/03/18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordikhani F, Erdem Arslan M, Marcelo R, Sahin I, Grigsby P, Schwarz JK et al (2016) Drug delivery approaches for the treatment of cervical cancer. Pharmaceutics 8(3):23. Epub 2016/07/23

    Article  PubMed Central  CAS  Google Scholar 

  • Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology 16(Suppl 4):iv1–i63

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandita D, Poonia N, Kumar S, Lather V, Madaan K (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. https://doi.org/10.4103/0975-7406.130965

  • Patel J, Amrutiya J, Bhatt P, Javia A, Jain M, Misra A (2018) Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul 35(2):204–217. https://doi.org/10.1080/02652048.2018.1453560

    Article  CAS  PubMed  Google Scholar 

  • Pelaz B, Alexiou C, Alvarez-Puebla RA et al (2017) Diverse applications of nanomedicine. ACS Nano. https://doi.org/10.1021/acsnano.6b06040

  • Perez A, Neskey DM, Wen J, Goodwin JW, Slingerland J, Pereira L, Weigand S, Franzmann EJ (2012) Targeting CD44 in head and neck squamous cell carcinoma (HNSCC) with a new humanized antibody RO5429083. Cancer Res 72(8 Supplement). https://doi.org/10.1158/1538-7445.AM2012-2521

  • Puertas S, Moros M, Fernández-Pacheco R, Ibarra M, Grazú V, De La Fuente J (2010) Designing novel nano-immunoassays: antibody orientation versus sensitivity. J Phys D Appl Phys 43:474012

    Article  CAS  Google Scholar 

  • Quarta A, Bernareggi D, Benigni F, Luison E, Nano G, Nitti S, Cesta MC, Di Ciccio L, Canevari S, Pellegrino T, Figini M (2015) Targeting FR-expressing cells in ovarian cancer with Fab- functionalized nanoparticles: a full study to provide the proof of principle from in vitro to in vivo. Nanoscale 7(6):2336–2351. https://doi.org/10.1039/c4nr04426f

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Cabrer P, Campos F (2013) Liposomes and nanotechnology in drug development: focus on neurological targets. Int J Nanomedicine. https://doi.org/10.2147/IJN.S30721

  • Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2007.05.009

  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9(1):1410. Epub 2018/04/14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188(6):759–768. Epub 2010/03/17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samanta A, Medintz IL (2016) Nanoparticles and DNA-a powerful and growing functional combination in bionanotechnology. Nanoscale. https://doi.org/10.1039/c5nr08465b

  • Sandoval YH, Li Y, Anand-Srivastava MB (2011) Transactivation of epidermal growth factor receptor by enhanced levels of endogenous angiotensin II contributes to the overexpression of Gialpha proteins in vascular smooth muscle cells from SHR. Cell Signal 23(11):1716–1726. Epub 2011/06/30

    Article  CAS  PubMed  Google Scholar 

  • Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine. https://doi.org/10.2147/IJN.S36654

  • Sano K (2017) Development of molecular probes based on iron oxide nanoparticles for in vivo magnetic resonance/photoacoustic dual imaging of target molecules in tumors. Yakugaku Zasshi 137(1):55–60. Epub 2017/01/05

    Article  CAS  PubMed  Google Scholar 

  • Sapsford KE, Algar WR, Berti L et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer. https://doi.org/10.1038/nrc.2016.108

  • Shimada T, Ueda M, Jinno H, Chiba N, Wada M, Watanabe J et al (2009) Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Res 29(4):1009–1014. Epub 2009/05/06

    CAS  PubMed  Google Scholar 

  • Silva AL, Soema PC, Slutter B, Ossendorp F, Jiskoot W (2016) PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Human Vac Immunother 12:1056–1069

    Article  CAS  Google Scholar 

  • Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm2354

  • Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Minz AP, Sahoo SK (2017) Nanomedicine-mediated drug targeting of cancer stem cells. Drug Disc Today 22(6):952–959

    Article  CAS  Google Scholar 

  • Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2008.03.015

  • Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004

    CAS  PubMed  Google Scholar 

  • Sokolov K, Tam J, Tam J, Travis K, Larson T, Aaron J et al (2009) Cancer imaging and therapy with metal nanoparticles. Conf Proc IEEE Eng Med Biol Soc 2009:2005–2007. Epub 2009/12/08

    Google Scholar 

  • Sokolova V, Epple M (2008) Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem – Int Ed. https://doi.org/10.1002/anie.200703039

  • Steelman LS, Chappell WH, Abrams SL et al (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mtor pathways in controlling growth and sensitivity to therapy- implications for cancer and aging. Aging (Albany NY). https://doi.org/10.18632/aging.100296

  • Steinhauser I, Spänkuch B, Strebhardt K, Langer K (2006) Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials 27(28):4975–4983

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhu MQ, Fu K, Lewinski N, Drezek RA (2007) Lead sulfide near-infrared quantum dot bioconjugates for targeted molecular imaging. Int J Nanomedicine 2(2):235–240. Epub 2007/08/29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun DX, Liu Z, Tan XD, Cui DX, Wang BS, Dai XW (2012) Nanoparticle-mediated local delivery of an antisense TGF-β1 construct inhibits intimal hyperplasia in autogenous vein grafts in rats. PLoS One 7(7):e41857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun TM, Wang YC, Wang F et al (2014) Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials. https://doi.org/10.1016/j.biomaterials.2013.10.011

  • Sun G, Xing W, Xing R, Cong L, Tong S, Yu S (2018) Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe. Oncol Lett 15(2):2471–2476. Epub 2018/02/13

    PubMed  Google Scholar 

  • Szlachcic A, Pala K, Zakrzewska M, Jakimowicz P, Wiedlocha A, Otlewski J (2012) FGF1-gold nanoparticle conjugates targeting FGFR efficiently decrease cell viability upon NIR irradiation. Int J Nanomedicine 7:5915–5927. Epub 2012/12/12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka R, Yuhi T, Nagatani N, Endo T, Kerman K, Takamura Y, Tamiya E (2006) A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem 385(8):1414–1420

    Article  CAS  PubMed  Google Scholar 

  • Tang N, Wang L, Esko J et al (2004) Loss of HIF-1α in endothelial cells disrupts a hypoxia- driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. https://doi.org/10.1016/j.ccr.2004.09.026

  • Tao L, Zhang K, Sun Y, Jin B, Zhang Z, Yang K (2012) Anti-epithelial cell adhesion molecule monoclonal antibody conjugated fluorescent nanoparticle biosensor for sensitive detection of colon cancer cells. Biosens Bioelectron 35:186

    Article  CAS  PubMed  Google Scholar 

  • Tao W, Zeng X, Wu J, Zhu X, Yu X, Zhang X et al (2016) Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics 6(4):470–484. Epub 2016/03/05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RM, Sillerud LO (2012) Paclitaxel-loaded iron platinum stealth immunomicelles are potent MRI imaging agents that prevent prostate cancer growth in a PSMA-dependent manner. Int J Nanomedicine 7:4341–4352. https://doi.org/10.2147/IJN.S34381. Epub 2012 Aug 6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas RK, Baker AC, DeBiasi RM et al (2007) High-throughput oncogene mutation profiling in human cancer. Nat Genet. https://doi.org/10.1038/ng1975

  • Tian M, Schiemann WP (2009) The TGF-β paradox in human cancer: an update. Future Oncol 5(2):259–271. PMC2710615

    Article  CAS  PubMed  Google Scholar 

  • Trinh TL, Zhu G, Xiao X, Puszyk W, Sefah K, Wu Q et al (2015) A synthetic aptamer-drug adduct for targeted liver cancer therapy. PLoS One 10(11):e0136673. Epub 2015/11/03

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tseng CL, Wang TW, Dong GC, Yueh-Hsiu Wu S, Young TH, Shieh MJ et al (2007) Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 28(27):3996–4005. Epub 2007/06/16

    Article  CAS  PubMed  Google Scholar 

  • Tseng CL, Wu SY, Wang WH, Peng CL, Lin FH, Lin CC et al (2008) Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials 29(20):3014–3022. Epub 2008/04/26

    Article  CAS  PubMed  Google Scholar 

  • Urien S, Lokiec F (2004) Population pharmacokinetics of total and unbound plasma cisplatin in adult patients. Clin Pharmacol 57(6):756–763

    Article  CAS  Google Scholar 

  • Ventola CL (2017) Progress in Nanomedicine: approved and investigational Nanodrugs. P T. https://doi.org/10.1016/j.psychres.2007.07.030

  • Voltan R, Secchiero P, Ruozi B et al (2013) Nanoparticles engineered with rituximab and loaded with Nutlin-3 show promising therapeutic activity in B-leukemic xenografts. Clin Cancer Res 19(14):3871–3880

    Article  CAS  PubMed  Google Scholar 

  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tian S, Petros RA, Napier ME, Desimone JM (2010) The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc 132(32):11306–11313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CH, Chiou SH, Chou CP, Chen YC, Huang YJ, Peng CA (2011) Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine 7:69–79

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Tang GP, Shen J et al (2012) A gene nanocomplex conjugated with monoclonal antibodies for targeted therapy of hepatocellular carcinoma. Biomaterials 33(18):4597–4607

    Article  CAS  PubMed  Google Scholar 

  • Wang L, An Y, Yuan C, Zhang H, Liang C, Ding F, Gao Q, Zhang D (2015) GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells. Int J Nanomedicine 10:2507–2519. https://doi.org/10.2147/IJN.S77642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437(2):199–213. Epub 2011/06/30

    Article  CAS  PubMed  Google Scholar 

  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. https://doi.org/10.1016/j.jconrel.2014.12.030

  • Widder KJ, Senyei AE, Scarpelli DG (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Exp Biol Med 158(2):141–146

    Google Scholar 

  • Widder KJ, Marino PA, Morris RM, Howard DP, Poore GA, Senyei AE (1983) Selective targeting of magnetic albumin microspheres to the Yoshida sarcoma: Ultrastructural evaluation of microsphere disposition. Eur J Can Clin Oncol 19(1):141–147

    Google Scholar 

  • Wong SF (2005) Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin Ther 27(6):684–694. Epub 2005/08/25

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Lan CH, Wu KL, Wu YM, Jane WN, Hsiao M et al (2018a) Hepatocellular carcinoma-targeted nanoparticles for cancer therapy. Int J Oncol 52(2):389–401. Epub 2017/12/06

    CAS  PubMed  Google Scholar 

  • Wu ST, Fowler AJ, Garmon CB, Fessler AB, Ogle JD, Grover KR, Allen BC, Williams CD, Zhou R, Yazdanifar M, Ogle CA, Mukherjee P (2018b) Treatment of pancreatic ductal adenocarcinoma with tumor antigen specific-targeted delivery of paclitaxel loaded PLGA nanoparticles. BMC Cancer 18(1):457. https://doi.org/10.1186/s12885-018-4393-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Wang Y, Lu Z, Leaf H, Nano ACS (2014) Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8(4):3636–3645. PMC4004320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature. https://doi.org/10.1038/35025215

  • Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. https://doi.org/10.1039/c1nr11188d

  • Zhang Z, Chen J, Ding L, Jin H, Lovell JF, Corbin IR et al (2010) HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting. Small 6(3):430–437. Epub 2009/12/04

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Guo, Zhang XL, Li DP, Zhang TT, Gao FF, Liu NF, Sheng XG (2015) Antibody fragment- armed mesoporous silica nanoparticles for the targeted delivery of bevacizumab in ovarian cancer cells. Int J Pharm 496(2):1026–1033. https://doi.org/10.1016/j.ijpharm.2015.10.080. Epub 2015 Nov 2

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhang Z, Zhao L (2016) Folate-decorated poly(3-hydroxybutyrate-co-3- hydroxyoctanoate) nanoparticles for targeting delivery: optimization and in vivo antitumor activity. Drug Deliv 23(5):1830–1837. Epub 2015/12/15

    Article  CAS  PubMed  Google Scholar 

  • Zhao MX, Zeng EZ (2015) Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res Lett. https://doi.org/10.1186/s11671-015-0873-8

  • Zhu R, Wang Z, Liang P, He X, Zhuang X, Huang R, Wang M, Wang Q, Qian Y, Wang S (2017) Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@LDH for anti-neuroblastoma therapy. Acta Biomater 63:163–180. https://doi.org/10.1016/j.actbio.2017.09.009. Epub 2017 Sep 18

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simran Tandon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, D., Sharma-Walia, N., Kapoor, S., Tandon, S. (2020). Antibody-Targeted Nanoparticles for Cancer Treatment. In: Saxena, S., Khurana, S. (eds) NanoBioMedicine. Springer, Singapore. https://doi.org/10.1007/978-981-32-9898-9_3

Download citation

Publish with us

Policies and ethics