Skip to main content

Nanobiotechnology: Paving the Way to Personalized Medicine

  • Chapter
  • First Online:
NanoBioMedicine

Abstract

Current medical treatments have been addressing the medical needs of patients for centuries. These drugs target various cellular surface receptors and intracellular moieties to exhibit their effects. The integration of the nanobiotechnology tools in pharmaceutical sciences has proved that the therapeutic effectiveness of the drug molecules and other bioactive molecules can be considerably increased. Moreover, the drug molecules can be targeted to the particular site of action causing a significant decrease in the appearance of the adverse drug reactions. The development in omics sciences has further supported the development of biotechnology as an efficient means to detect, diagnose, and treat various diseased conditions. Conversely, nanotechnology along with the developments in the fields of materials sciences, bioengineering, and systems biology has made it possible to view, model, fabricate, manipulate, and modify the anatomical, biochemical, and physiological patterns within a living cell and in turn tissue, organ, and, ultimately, an organism. The merger of the two sciences, nanotechnology and biotechnology, has given rise to nanobiotechnology which can serve as a means to attain the ultimate goal of the healthcare system by being predictive, preventive, personalized, and participatory. The current chapter reviews the interdisciplinary nature of the field of nanobiotechnology and the employment of its principles in the developing safe, stable, efficient, and cost-effective personalized treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADRs:

adverse drug reactions

BBB:

blood-brain barrier

CNS:

central nervous system

DNA:

deoxyribonucleic acid

EPR:

enhanced permeation retention

FDA:

food and drug authority

LMW:

low molecular weight

NCs:

nano carriers

nm:

nanometer

PTMs:

post-translational modifications

RNA:

ribonucleic acid

TAA:

tumor-associated antigens

References

  • Alconcel SN, Baas AS, Maynard HD (2011) FDA-approved poly (ethylene glycol)–protein conjugate drugs. Polym Chem 2(7):1442–1448

    Article  CAS  Google Scholar 

  • Alonso SG, de la Torre Díez I, Zapiraín BG (2019) Predictive, personalized, preventive and participatory (4P) medicine applied to telemedicine and eHealth in the literature. J Med Syst 43(5):140. (1–10)

    Article  PubMed  Google Scholar 

  • Barenholz YC (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  • Busatto S, Pham A, Suh A, Shapiro S, Wolfram J (2019) Organotropic drug delivery: synthetic nanoparticles and extracellular vesicles. Biomed Microdevices 21(2):46. (1–17)

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaplin S, Gnanapavan S (2015) Plegridy for the treatment of RRMS in adults. Prescriber 26(9):29–31

    Article  Google Scholar 

  • Chaudhuri TR, Straubinger RM (2019) Nanoparticles for brain tumor delivery. In: Nervous system drug delivery. Elsevier, Amsterdam, pp 229–250

    Chapter  Google Scholar 

  • Cirillo D, Valencia A (2019) Big data analytics for personalized medicine. Curr Opin Biotechnol 58:161–167

    Article  CAS  PubMed  Google Scholar 

  • Das S, Mitra S, Khurana SP, Debnath N (2013) Nanomaterials for biomedical applications. Front Life Sci 7(3–4):90–98

    Article  CAS  Google Scholar 

  • Davis JD, Kumbale CM, Zhang Q, Voit EO (2019) Dynamical systems approaches to personalized medicine. Curr Opin Biotechnol 58:168–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devasahayam S (2019) Nanotechnology and nanomedicine in market: a global perspective on regulatory issues. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) Characterization and biology of nanomaterials for drug delivery. Elsevier, Cambridge, MA, pp 477–522

    Chapter  Google Scholar 

  • Dyawanapelly S, Mehrotra P, Ghosh G, Jagtap DD, Dandekar P, Jain R (2019) How the surface functionalized nanoparticles affect conformation and activity of proteins: exploring through protein-nanoparticle interactions. Bioorg Chem 82:17–25

    Article  CAS  PubMed  Google Scholar 

  • Elim HI, Chiang LY (2019) Nanochip medicine: physical chemistry engineering. Sci Nat 2(1):086–089

    Google Scholar 

  • Flores M, Glusman G, Brogaard K, Price ND, Hood L (2013) P4 medicine: how systems medicine will transform the healthcare sector and society. Pers Med 10(6):565–576

    Article  CAS  Google Scholar 

  • Fornaguera C, García-Celma MJ (2017) Personalized Nanomedicine: a revolution at the nanoscale. J Pers Med 7(4):12. (1–20)

    Article  PubMed Central  Google Scholar 

  • Fuentes AC, Szwed E, Spears CD, Thaper S, Dang LH, Dang NH (2015) Denileukin diftitox (Ontak) as maintenance therapy for peripheral T-cell lymphomas: three cases with sustained remission. Case Rep Oncol Med 2015:1–5

    Google Scholar 

  • Galetti M, Rossi S, Caffarra C, Gerboles AG, Miragoli M (2019) Innovation in nanomedicine and engineered nanomaterials for therapeutic purposes. In: Exposure to engineered nanomaterials in the environment. Elsevier, Amsterdam, pp 235–262

    Chapter  Google Scholar 

  • Halappanavar S, Vogel U, Wallin H, Yauk CL (2018) Promise and peril in nanomedicine: the challenges and needs for integrated systems biology approaches to define health risk. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(1):1–7

    Article  Google Scholar 

  • Hirani A, Lee AGYW, Pathak Y, Sutariya V (2016) Nanotechnology for Omics-based ocular drug delivery. In: Khosrow-Pour M (ed) Oncology: breakthroughs in research and practice: breakthroughs in research and practice. IGI Global, Hershey, pp 283–298

    Google Scholar 

  • Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol 29(6):613–624

    Article  CAS  Google Scholar 

  • Hood L, Friend SH (2011) Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 8(3):184–187

    Article  PubMed  Google Scholar 

  • Karczewski KJ, Snyder MP (2018) Integrative omics for health and disease. Nat Rev Genet 19(5):299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik A, Jayant RD, Nair M (2018) Nanomedicine for neuroHIV/AIDS management. Future Med 2018:669–673

    Google Scholar 

  • Kim TH, Lee S, Chen X (2013) Nanotheranostics for personalized medicine. Expert Rev Mol Diagn 13(3):257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobeissy FH, Gulbakan B, Alawieh A, Karam P, Zhang Z, Guingab-Cagmat JD, Mondello S, Tan W, Anagli J, Wang K (2014) Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences. Omics J Integr Biol 18(2):111–131

    Article  CAS  Google Scholar 

  • Lakkireddy HR, Bazile DV (2019) Nano-carriers for drug routeing–towards a new era. J Drug Target 27(5–6):525–541

    Article  CAS  PubMed  Google Scholar 

  • Leonavicius K, Nainys J, Kuciauskas D, Mazutis L (2019) Multi-omics at single-cell resolution: comparison of experimental and data fusion approaches. Curr Opin Biotechnol 55:159–166

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Knudsen GM, Pedley AM, He J, Johnson JL, Yaron TM, Cantley LC, Benkovic SJ (2019a) Mapping post-translational modifications of de novo purine biosynthetic enzymes: implications for pathway regulation. J Proteome Res 18(5):2078–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Luo X, Jiang C, Zhao H (2019b) Difficulties and challenges in the development of precision medicine. Clin Genet 95(5):569–574

    Article  PubMed  CAS  Google Scholar 

  • López E, Madero L, López-Pascual J, Latterich M (2012) Clinical proteomics and OMICS clues useful in translational medicine research. Proteome Sci 10(1):35. (1–11)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maestri E, Marmiroli N, Song J, White JC (2019) Ethical issues of engineered nanomaterials applications and regulatory solutions. In: Marmiroli N, White JC, Song J (eds) Exposure to engineered nanomaterials in the environment. Elsevier, Amsterdam, pp 315–330

    Chapter  Google Scholar 

  • McClune B, Buadi F, Aslam N, Przepiorka D (2005) Intrathecal liposomal Cytarabine (Depocyt) is safe and effective for prevention of meningeal disease in patients with acute lymphoblastic leukemia and high-grade lymphoma treated with the HyperCVAD regimen. Blood 106(11):4594. (1–2)

    Article  Google Scholar 

  • Munshi L, Sun S, Brito M (2017) Megace (Megestrol Acetate) induced hypogonadism in a male patient-a case report. Endocr Pract 23:192. (1)

    Google Scholar 

  • Musalem HM, Alshaikh AA, Tuleimat LM, Alajlan S (2018) Outcome with topical sirolimus for port wine stain malformations after unsatisfactory results with pulse dye laser treatment alone. Ann Saudi Med 38(5):376–380

    Google Scholar 

  • Naik RR, Singamaneni S (2017) Introduction: bioinspired and biomimetic materials. ACS Chem Rev 117:12581–12583

    Article  CAS  Google Scholar 

  • Noell G, Faner R, Agustí A (2018) From systems biology to P4 medicine: applications in respiratory medicine. Eur Respir Rev 27(147):170110. (1–15)

    Article  PubMed  Google Scholar 

  • Paradise J (2019) Regulating Nanomedicine at the Food and Drug Administration. AMA J Ethics 21(4):347–355

    Article  Google Scholar 

  • Patil A, Mishra V, Thakur S, Riyaz B, Kaur A, Khursheed R, Patil K, Sathe B (2019) Nanotechnology derived nanotools in biomedical perspectives: an update. Curr Nanosci 15(2):137–146

    Article  CAS  Google Scholar 

  • Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C (2017) Diverse applications of nanomedicine. ACS Nano 11(3):2313–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietersz GA, Wang X, Yap ML, Lim B, Peter K (2017) Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine 12(15):1873–1889

    Article  CAS  PubMed  Google Scholar 

  • Pillai G (2019) Nanotechnology toward treating Cancer: a comprehensive review. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) Applications of targeted Nano drugs and delivery systems. Elsevier, Amsterdam, pp 221–256

    Chapter  Google Scholar 

  • Rana V, Sharma R (2019) Recent advances in development of Nano drug delivery. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) Applications of targeted Nano drugs and delivery systems. Elsevier, Amsterdam, pp 93–131

    Chapter  Google Scholar 

  • Rauck RL, Bookbinder SA, Bunker TR, Alftine CD, Ghalie R, Negro-Vilar A, Gershon S (2006) The ACTION study: a randomized, open-label, multicenter trial comparing once-a-day extended-release morphine sulfate capsules (AVINZA) to twice-a-day controlled-release oxycodone hydrochloride tablets (OxyContin) for the treatment of chronic, moderate to severe low back pain. J Opioid Manag 2(3):155–166

    Article  PubMed  Google Scholar 

  • Reineke J (2018) Terminology matters: there is no targeting, but retention. J Control Release 273:180–183

    Article  CAS  PubMed  Google Scholar 

  • Rocha M, Chaves N, Báo S (2017) Nanobiotechnology for breast cancer treatment. In: Van Pham P (ed) Breast cancer-from biology to medicine. InTech Open, Rijeka, pp 411–432

    Google Scholar 

  • Selvan ST, Narayanan K (2016) Introduction to Nanotheranostics. In: Selvan ST, Narayanan K (eds) Introduction to Nanotheranostics. Springer, Singapore, pp 1–6

    Chapter  Google Scholar 

  • Siegrist S, Cörek E, Detampel P, Sandström J, Wick P, Huwyler J (2019) Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology 13(1):73–99

    Article  CAS  PubMed  Google Scholar 

  • Sobradillo P, Pozo F, Agustí Á (2011) P4 medicine: the future around the corner. Archivos de Bronconeumología (English Edition) 47(1):35–40

    Article  Google Scholar 

  • Sonali MKV, Singh RP, Agrawal P, Mehata AK, Datta Maroti Pawde N, Sonkar R, Muthu MS (2018) Nanotheranostics: emerging strategies for early diagnosis and therapy of brain Cancer. Nano 2(1):70–86

    CAS  Google Scholar 

  • Srinivasarao DA, Lohiya G, Katti DS (2019) Fundamentals, challenges, and nanomedicine-based solutions for ocular diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(4):e1548. (1–26)

    Article  PubMed  Google Scholar 

  • Steele JF, Peyret H, Saunders K, Castells-Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP (2017) Synthetic plant virology for nanobiotechnology and nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(4):c1447. (1–18)

    Article  Google Scholar 

  • Sunshine JC, Paller AS (2019) Which Nanobasics should be taught in medical schools? AMA J Ethics 21(4):337–346

    Article  Google Scholar 

  • Szybowicz M, Koralewski M, Karon J, Melnikova L (2015) Micro-Raman spectroscopy of natural and synthetic ferritins and their mimetics. Acta Phys Pol A 127(2):534–536

    Article  CAS  Google Scholar 

  • Thangavelu RM, Gunasekaran D, Jesse MI, SU MR, Sundarajan D, Krishnan K (2016) Nanobiotechnology approach using plant rooting hormone synthesized silver nanoparticle as “nanobullets” for the dynamic applications in horticulture–an in vitro and ex vitro study. Arab J Chem 11(1):48–61

    Article  CAS  Google Scholar 

  • Theek B, Rizzo LY, Ehling J, Kiessling F, Lammers T (2014) The theranostic path to personalized nanomedicine. Clin Transl Imaging 2(1):67–76

    Article  Google Scholar 

  • Tietjen GT, Bracaglia LG, Saltzman WM, Pober JS (2018) Focus on fundamentals: achieving effective nanoparticle targeting. Trends Mol Med 24(7):598–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turecek P, Romeder-Finger S, Apostol C, Bauer A, Crocker-Buqué A, Burger D, Schall R, Gritsch H (2016) A world-wide survey and field study in clinical haemostasis laboratories to evaluate FVIII: C activity assay variability of Adynovate and Obizur in comparison with ADVATE. Haemophilia 22(6):957–965

    Article  CAS  PubMed  Google Scholar 

  • Van Den Berg A, Mummery CL, Passier R, Van der Meer AD (2019) Personalised organs-on-chips: functional testing for precision medicine. Lab Chip 19(2):198–205

    Article  PubMed  Google Scholar 

  • von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BY (2017) Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol 35(2):159–171

    Article  CAS  Google Scholar 

  • Wang J, Tao W, Chen X, Farokhzad OC, Liu G (2017) Emerging advances in Nanotheranostics with intelligent bioresponsive systems. Theranostics 7(16):3915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Peng W-X, Wang L, Ye L (2019) Toward multiomics-based next-generation diagnostics for precision medicine. Pers Med 16(2):157–170

    Article  CAS  Google Scholar 

  • Wu J-c, Meng Q-c, Ren H-m, Wang H-t, Wu J, Wang Q (2017) Recent advances in peptide nucleic acid for cancer bionanotechnology. Acta Pharmacol Sin 38(6):798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Zhang Y, Li F, Lv T, Li Z, Chen H, Jia L, Gao Y (2019) Challenges and opportunities from basic cancer biology for nanomedicine for targeted drug delivery. Curr Cancer Drug Targets 19(4):257–276

    Article  CAS  PubMed  Google Scholar 

  • Zarei M, Aalaie J (2019) Profiling of nanoparticle–protein interactions by electrophoresis techniques. Anal Bioanal Chem 411(1):79–96

    Article  CAS  PubMed  Google Scholar 

  • Zhang X (2017) Nanomedicine, bioimaging and biological microenvironment monitoring. Nanomedicine 1(1):3

    Google Scholar 

  • Zhang YR, Lin R, Li HJ, He W l, Du JZ, Wang J (2019) Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(1):e1519. (1–12)

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Sultan D, Liu Y (2019) Biodistribution, excretion, and toxicity of nanoparticles. In: Cui W, Zhao X (eds) Theranostic bionanomaterials. Elsevier, Amsterdam, pp 27–53

    Chapter  Google Scholar 

  • Zhou J, Kroll AV, Holay M, Fang RH, Zhang L (2019) Biomimetic nanotechnology toward personalized vaccines. Adv Mater 1901255:1–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haseeb, Q., Hamdani, S.D.A., Akram, A., Khan, D.A., Rajput, T.A., Babar, M.M. (2020). Nanobiotechnology: Paving the Way to Personalized Medicine. In: Saxena, S., Khurana, S. (eds) NanoBioMedicine. Springer, Singapore. https://doi.org/10.1007/978-981-32-9898-9_2

Download citation

Publish with us

Policies and ethics