Skip to main content

Emerging Trends in Nanotheranostics

  • Chapter
  • First Online:
NanoBioMedicine

Abstract

In recent times, the population is more prone to getting sick than the times before. This widespread occurrence of diseases warrants a diagnostic system in place which can help us acknowledge its presence even during the early stages, especially in the case of life-threatening ones. Nanotheranostics is a field which helps us with the same; it not only helps us to diagnose a disease in its earlier stages but also helps treat it at the point of care itself. Nanotheranostics include diagnosis at a nanoscale level, using tools such as MRI, PET-CT scan, etc., as well as providing therapy at the nanoscale level using tools like chemotherapy, radiotherapy, photodynamic therapy, etc. Both systems are conjugated on a nanocarrier which can be a polymer, lipid, or inorganic material depending upon the properties required. This new age medical system has also opened avenues for something called personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aioub M, Panikkanvalappil SR, El-Sayed MA (2017) Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy. ACS Nano 11(1):579–586

    Article  CAS  PubMed  Google Scholar 

  • Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis MH, Ntziachristos V (2012) FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat Methods 9(6):615–620

    Article  CAS  PubMed  Google Scholar 

  • Ali MRK et al (2016) Simultaneous time-dependent surface-enhanced raman spectroscopy, metabolomics, and proteomics reveal cancer cell death mechanisms associated with gold nanorod photothermal therapy. J Am Chem Soc 138(47):15434–15442

    Article  CAS  PubMed  Google Scholar 

  • Ali MRK et al (2017) Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc Natl Acad Sci U S A 114(15):E3110–E3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Jamal T, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44(10):1094–1104

    Article  CAS  PubMed  Google Scholar 

  • Allison RR, Moghissi K (2013) Photodynamic therapy (PDT): PDT mechanisms. Clin Endosc 46(1):24–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreozzi E, Seo JW, Ferrara K, Louie A (2011) Novel method to label solid lipid nanoparticles with 64 Cu for positron emission tomography imaging. Bioconjug Chem 22(4):808–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arifin DR et al (2011) Trimodal gadolinium-gold microcapsules containing pancreatic islet cells restore normoglycemia in diabetic mice and can be tracked by using US, CT, and positive-contrast MR imaging. Radiology 260(3):790–798

    Article  PubMed  PubMed Central  Google Scholar 

  • Bangham D, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    Article  CAS  PubMed  Google Scholar 

  • Bar-Shalom R, Valdivia AY, Blaufox MD (2000) PET imaging in oncology. Semin Nucl Med 30(3):150–185

    Article  CAS  PubMed  Google Scholar 

  • Blanco E, Kessinger CW, Sumer BD, Gao J (2009) Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med (Maywood) 234(2):123–131

    Article  CAS  Google Scholar 

  • Blau R, Krivitsky A, Epshtein Y, Satchi-Fainaro R (2016) Are nanotheranostics and nanodiagnostics-guided drug delivery. Drug Resist Updat Elsevier 27:39–58

    Article  Google Scholar 

  • Boswell A et al (2008) Synthesis, characterization, and biological evaluation of integrin alphavbeta3-targeted PAMAM dendrimers. Mol Pharm 5(4):527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulbake U et al (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9(2):12

    Article  PubMed Central  CAS  Google Scholar 

  • Burguma MJ, Evansa SJ, Jenkins GJ, Doak SH, Clift MJD (2018) Considerations for the human health implications of nanotheranostics. Handbook of nanomaterials for cancer theranostics. Elsevier

    Google Scholar 

  • Cai Q-Y et al (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Investig Radiol 42(12):797–806

    Article  CAS  Google Scholar 

  • Calixto GMF et al (2016) Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21(3):342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Celli JP et al (2010) Imaging and photodynamic therapy: mechanisms, monitoring and optimization. Chem Rev 110(5):2795–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarty R et al (2014) Matching the decay half-life with the biological half-life: ImmunoPET imaging with (44)Sc-labeled cetuximab Fab fragment. Bioconjug Chem 25(12):2197–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Pei Y, Chen Z, Cai J (2010a) Quantum dot labeling based on near-field optical imaging of CD44 molecules. Micron 41(3):198–202

    Article  CAS  PubMed  Google Scholar 

  • Chen W-T et al (2010b) Dynamic contrast-enhanced folate-receptor-targeted MR imaging using a Gd-loaded PEG-dendrimer-folate conjugate in a mouse xenograft tumor model. Mol Imaging Biol MIB Off Publ Acad Mol Imaging 12(2):145–154

    Article  Google Scholar 

  • Chen C-L et al (2013) Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials 34(4):1128–1134

    Article  PubMed  CAS  Google Scholar 

  • Chen L et al (2015a) Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 66:21–28

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Ke H, Dai Z, Liu Z (2015b) Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials Elsevier 73:214–230

    Article  CAS  Google Scholar 

  • Cho H, Lai TC, Tomoda K, Kwon GS (2015) Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech 16(1):10–20

    Article  CAS  PubMed  Google Scholar 

  • Chopra (2004) [74As]-labeled monoclonal antibody against anionic phospholipids. In: Molecular imaging and contrast agent database (MICAD). National Center for Biotechnology Information (US), Bethesda

    Google Scholar 

  • Chrastina A, Massey KA, Schnitzer JE (2011) Overcoming in vivo barriers to targeted nanodelivery: overcoming barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(4):421–437

    Article  CAS  PubMed  Google Scholar 

  • Chu M et al (2013) Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34(16):4078–4088

    Article  CAS  PubMed  Google Scholar 

  • Cormode P et al (2008) Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett 8(11):3715–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cormode P et al (2010) Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256(3):774–782

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai Z (ed) (2016) Advances in nanotheranostics I: design and fabrication of theranosic nanoparticles. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Dai H, Lin GX, Liu Z, Wu R, Chen Y (2017) Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem Mater 29(20):8637–8652

    Article  CAS  Google Scholar 

  • Dawidczyk CM, Russell LM, Searson PC (2014) Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Front Chem 2:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Smet M, Heijman E, Langereis S, Hijnen NM, Grüll H (2011) Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 150(1):102–110

    Article  PubMed  CAS  Google Scholar 

  • de Vries JM et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23(11):1407–1413

    Article  PubMed  CAS  Google Scholar 

  • de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grüll H (2010) Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials 31(25):6537–6544

    Article  PubMed  CAS  Google Scholar 

  • Devaraj K, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R (2009) 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 20(2):397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653

    Article  CAS  PubMed  Google Scholar 

  • Dougherty J, Grindey GB, Fiel R, Weishaupt KR, Boyle DG (1975) Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst 55(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Duan X et al (2013) Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano 7(7):5858–5869

    Article  CAS  PubMed  Google Scholar 

  • Ducongé F et al (2008) Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. Bioconjug Chem 19(9):1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Dunne M, Zheng J, Rosenblat J, Jaffray DA, Allen C (2011) APN/CD13-targeting as a strategy to alter the tumor accumulation of liposomes. J Contr Release 154(3):298–305

    Article  CAS  Google Scholar 

  • Espinosa R, Di Corato J, Kolosnjaj-Tabi P, Flaud TP, Wilhelm C (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10(2):2436–2446

    Article  CAS  PubMed  Google Scholar 

  • Feng J et al (2017) Bioconjugation of gold nanobipyramids for SERS detection and targeted photothermal therapy in breast cancer. ACS Biomater Sci Eng 3(4):608–618

    Article  CAS  PubMed  Google Scholar 

  • Ferber S et al (2014) Polymeric nanotheranostics for real-time non-invasive optical imaging of breast cancer progression and drug release. Cancer Lett 352(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Fortin-Ripoche J-P et al (2006) Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239(2):415–424

    Article  PubMed  Google Scholar 

  • Glasgow DK, Chougule MB (2015) Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J Biomed Nanotechnol 11(11):1859–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaus C, Rossin R, Welch MJ, Bao G (2010) In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem 21(4):715–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou Y, Zhou M, Miao D, Su G (2018) Bio-inspired protein-based nanoformulations for cancer theranostics. Front Pharmacol 9(421)

    Google Scholar 

  • Hao N, Li L, Tang F (2014) Shape-mediated biological effects of mesoporous silica nanoparticles. J Biomed Nanotechnol 10(10):2508–2538

    Article  CAS  PubMed  Google Scholar 

  • Herth MM et al (2009) Radioactive labeling of defined HPMA-based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography. Biomacromolecules 10(7):1697–1703

    Article  CAS  PubMed  Google Scholar 

  • Herth MM, Barz M, Jahn M, Zentel R, Rösch F (2010) 72/74As-labeling of HPMA based polymers for long-term in vivo PET imaging. Bioorg Med Chem Lett 20(18):5454–5458

    Article  CAS  PubMed  Google Scholar 

  • Huang R et al (2011) Chlorotoxin-modified macromolecular contrast agent for MRI tumor diagnosis. Biomaterials 32(22):5177–5186

    Article  CAS  PubMed  Google Scholar 

  • Huang P et al (2014) Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv Mater Deerfield Beach Fla 26(37):6401–6408

    Article  CAS  Google Scholar 

  • Huh Y-M et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391

    Article  CAS  PubMed  Google Scholar 

  • Hussein A, Zagho MM, Nasrallah GK, Elzatahry AA (2018) Recent advances in functional nanostructures as cancer photothermal therapy. Int J Nanomedicine 13:2897–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde D et al (2009) Hybrid FMT–CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model. NeuroImage 44(4):1304–1311

    Article  PubMed  Google Scholar 

  • Jo SD, Ku SH, Won Y-Y, Kim SH, Kwon IC (2016) Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics Ivyspring 6(9):1362–1377

    Article  CAS  Google Scholar 

  • Kakizawa Y, Furukawa S, Kataoka K (2004) Block copolymer-coated calcium phosphate nanoparticles sensing intracellular environment for oligodeoxynucleotide and siRNA delivery. J Control Release Off J Control Release Soc 97(2):345–356

    Article  CAS  Google Scholar 

  • Karlsson H, Birch J, Halim J, Barsoum MW, Persson POÃ… (2015) Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett 15(8):4955–4960

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee S, Chen X (2013) Nanotheranostics for personalized medicine. Expert Rev Mol Diagn 13(3):257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinsella JM et al (2011) X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew Chem Int Ed 50(51):12308–12311

    Article  CAS  Google Scholar 

  • Kudr J et al (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nano 7(9)

    Google Scholar 

  • Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T (2013) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev ACS Publications. Nanoparticles in medicines 115:10907–10937

    Google Scholar 

  • Kunjachan S et al (2014) Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett 14(2):972–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammers T, Kiessling F, Hennink WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm Am Chem Soc 7(6):1899–1912

    Article  CAS  Google Scholar 

  • Li X et al (2017) Nanostructured phthalocyanine assemblies with protein-driven switchable photoactivities for biophotonic imaging and therapy. J Am Chem Soc 139(31):10880–10886

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lee S, Yoon J (2018) Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev 47(4):1174–1188

    Article  CAS  PubMed  Google Scholar 

  • Liang C et al (2014) Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater Deerfield Beach Fla 26(32):5646–5652

    Article  CAS  Google Scholar 

  • Licha K, Olbrich C (2005) Optical imaging in drug discovery and diagnostic applications. Adv Drug Deliv Rev 57(8):1087–1108

    Article  CAS  PubMed  Google Scholar 

  • Lin J et al (2016) Multimodal imaging guided cancer phototherapy by versatile biomimetic theranostics with UV and γ irradiation protection. Adv Mater Deerfield Beach Fla 28(17):3273–3279

    Article  CAS  Google Scholar 

  • Lin H, Wang X, Yu L, Chen Y, Shi J (2017) Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett 17(1):384–391

    Article  CAS  PubMed  Google Scholar 

  • Locatelli E et al (2012) Biocompatible nanocomposite for PET/MRI hybrid imaging. Int J Nanomedicine 7:6021–6033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long M, van Laarhoven HWM, Bulte JWM, Levitsky HI (2009) Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes. Cancer Res 69(7):3180–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorusso V et al (2014) Non-pegylated liposome-encapsulated doxorubicin citrate plus cyclophosphamide or vinorelbine in metastatic breast cancer not previously treated with chemotherapy: a multicenter phase III study. Int J Oncol 45(5):2137–2142

    Article  CAS  PubMed  Google Scholar 

  • Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115(4):1990–2042

    Article  CAS  PubMed  Google Scholar 

  • Luo K et al (2009) Functional L-lysine dendritic macromolecules as liver-imaging probes. Macromol Biosci 9(12):1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Huang J, Song S, Chen H, Zhang Z (2013) Cancer-targeted nanotheranostics: recent advances. Small J.:1–19 Wiley

    Google Scholar 

  • Medarova Z, Pham W, Kim Y, Dai G, Moore A (2006) In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int J Cancer 118(11):2796–2802

    Article  CAS  PubMed  Google Scholar 

  • Meng Z, Hou W, Zhou H, Zhou L, Chen H, Wu C (2018) Therapeutic considerations and conjugated polymer-based photosensitizers for photodynamic therapy. Macromol Rapid Commun 39(5)

    Google Scholar 

  • Menon JU, Jadeja P, Tambe P, Vu K, Yuan B, Nguyen KT (2013) Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 3(3):152–166. https://doi.org/10.7150/thno.5327

  • Mikhail S, Allen C (2010) Poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles containing chemically conjugated and physically entrapped docetaxel: synthesis, characterization, and the influence of the drug on micelle morphology. Biomacromolecules 11(5):1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Mikhaylov G et al (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 6(9):594–602

    Article  CAS  PubMed  Google Scholar 

  • Mountz JM, Alavi A, Mountz JD (2012) Emerging optical and nuclear medicine imaging methods in rheumatoid arthritis. Nat Rev Rheumatol 8(12):719–728

    Article  CAS  PubMed  Google Scholar 

  • Müller C et al (2014) Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med 55(10):1658–1664

    Article  PubMed  CAS  Google Scholar 

  • Nahrendorf M et al (2009) Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 29(10):1444–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ntziachristos V, Weissleder R (2001) Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation. Opt Lett 26(12):893–895

    Article  CAS  PubMed  Google Scholar 

  • Ntziachristos V, Tung C-H, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8(7):757–760

    Article  CAS  PubMed  Google Scholar 

  • Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13(1):195–208

    Article  PubMed  Google Scholar 

  • Nwe K et al (2009) A new approach in the preparation of dendrimer-based bifunctional diethylenetriaminepentaacetic acid MR contrast agent derivatives. Bioconjug Chem 20(7):1412–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrosa P et al (2015) Gold nanotheranostics: proof-of-concept or clinical tool? Nano 5(4):1853–1879

    CAS  Google Scholar 

  • Pérez-Campaña C et al (2013) Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano 7(4):3498–3505

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Medina C et al (2016) Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nat Commun 7

    Google Scholar 

  • Petersen L et al (2011) 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials 32(9):2334–2341

    Article  CAS  PubMed  Google Scholar 

  • Pichler J, Wehrl HF, Kolb A, Judenhofer MS (2008) Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 38(3):199–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Pressly ED et al (2007) Structural effects on the biodistribution and positron emission tomography (PET) imaging of well-defined (64)Cu-labeled nanoparticles comprised of amphiphilic block graft copolymers. Biomacromolecules 8(10):3126–3134

    Article  CAS  PubMed  Google Scholar 

  • Roesch (2012) Scandium-44: benefits of a long-lived PET radionuclide available from the (44)Ti/(44)Sc generator system. Curr Radiopharm 5(3):187–201

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam V, Selvakumar S, Yeh C-S (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43(17):6254–6287

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Mody N, Vyas SP (2017) Bioinspired nanotheranostics. Bipolymer based composites, vol 609. Elsevier, pp 279–288.

    Google Scholar 

  • Sohail A, Ahmad Z, Bég OA, Arshad S, Sherin L (2017) A review on hyperthermia via nanoparticle-mediated therapy. Bull Cancer (Paris) 104(5):452–461

    Article  Google Scholar 

  • Sonali, Viswanadh MK, Singh RP, Agrawal P, Mehata AK, Pawde DM, Narendra, Sonkar R, Muthu MS (2018) Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics Ivyspring 2:70–86

    Article  CAS  Google Scholar 

  • Spikes D (1985) The historical development of ideas on applications of photosensitized reactions in the health sciences. In: Bensasson RV, Jori G, Land EJ, Truscott TG (eds) Primary photo-processes in biology and medicine. Springer US, Boston, pp 209–227

    Chapter  Google Scholar 

  • Sun X et al (2018) Aggregation-induced emission nanoparticles encapsulated with PEGylated nano graphene oxide and their applications in two-photon fluorescence bioimaging and photodynamic therapy in vitro and in vivo. ACS Appl Mater Interfaces 10(30):25037–25046

    Article  CAS  PubMed  Google Scholar 

  • Swanson D et al (2008) Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine 3(2):201–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y et al (2015) An aptamer-targeting photoresponsive drug delivery system using ‘off–on’ graphene oxide wrapped mesoporous silica nanoparticles. Nanoscale 7(14):6304–6310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terreno E, Castelli DD, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110(5):3019–3042

    Article  CAS  PubMed  Google Scholar 

  • Torchilin P (2006) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Frank-Kamenetsky MD, Wolf GL (1999) CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad Radiol 6(1):61–65

    Article  CAS  PubMed  Google Scholar 

  • Trubetskoy VS, Gazelle GS, Wolf GL, Torchilin VP (1997) Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: design of long-circulating particulate contrast medium for X-ray computed tomography. J Drug Target 4(6):381–388

    Article  CAS  PubMed  Google Scholar 

  • Urvashi S, Dar MM, Hashmi AA (2014) Dendrimers: synthetic strategies, properties and applications. Orient J Chem 30(3):911–922

    Article  CAS  Google Scholar 

  • van Schooneveld MM et al (2010) A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging. Contrast Media Mol Imaging 5(4):231–236

    Article  PubMed  CAS  Google Scholar 

  • Varela-Moreira AA, Shi Y, Fens MHAM, Lammers T, Hennink WE, Schiffelers RM (2017) Clinical application of polymeric micelles for the treatment of cancer. Mater Chem Front 1(8):1485–1501

    Article  CAS  Google Scholar 

  • Vats S, Singh M, Siraj S, Singh H, Tandon S (2017) Role of nanotechnology in theranostics and personalized medicines. J Health Res Rev Wolters kluwer 4(1):1–7

    Article  Google Scholar 

  • Von Tappeiner H (1903) Therapeutische Versuche mit fluoreszierenden Stoffen. Munch Med Wochenschr 1:2042–2044

    Google Scholar 

  • Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331

    Article  CAS  PubMed  Google Scholar 

  • Watermann A, Brieger J (2017) Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials 7(7)

    Google Scholar 

  • Wehrl F, Judenhofer MS, Wiehr S, Pichler BJ (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36(Suppl 1):S56–S68

    Article  PubMed  Google Scholar 

  • Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Des Discov 15:473–484

    Article  CAS  Google Scholar 

  • Working K, Dayan AD (1996) Pharmacological-toxicological expert report. CAELYX. (stealth liposomal doxorubicin HCl). Hum Exp Toxicol 15(9):751–785

    CAS  PubMed  Google Scholar 

  • Wu SY, McMillan NAJ (2009) Lipidic systems for in vivo siRNA delivery. AAPS J 11(4):639–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P, Deng D, Gao J, Cai C (2016) Tubelike gold sphere-attapulgite nanocomposites with a high photothermal conversion ability in the near-infrared region for enhanced cancer photothermal therapy. ACS Appl Mater Interfaces 8(16):10243–10252

    Article  CAS  PubMed  Google Scholar 

  • Wunder A et al (2003) Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol (Baltim) 170(9):4793–4801

    CAS  Google Scholar 

  • Xiao Q et al (2013) A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J Am Chem Soc 135(35):13041–13048

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Jing C, Long Y-T (2017) Single plasmonic nanoparticles as ultrasensitive sensors. Analyst 142(3):409–420

    Article  CAS  PubMed  Google Scholar 

  • Xu H et al (2007) Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjug Chem 18(5):1474–1482

    Article  CAS  PubMed  Google Scholar 

  • Yan X et al (2015) Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies. Nanoscale 7(6):2520–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y (2011) cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17):4151–4160

    Google Scholar 

  • Zhang M, Kievit FM (2011) Cancer nanotheranostics: improving imaging and therapy. Adv Healthc Mater Wiley 23:217–247

    Google Scholar 

  • Zhang H et al (2015) Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials 42:66–77

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Jaffray D, Allen C (2009) Quantitative CT imaging of the spatial and temporal distribution of liposomes in a rabbit tumor model. Mol Pharm 6(2):571–580

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z (2014) Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35(26):7470–7478

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suhag, D., Chauhan, M., Shakeel, A., Das, S. (2020). Emerging Trends in Nanotheranostics. In: Saxena, S., Khurana, S. (eds) NanoBioMedicine. Springer, Singapore. https://doi.org/10.1007/978-981-32-9898-9_14

Download citation

Publish with us

Policies and ethics