Skip to main content

Mitigating the Risk of Arsenic and Fluoride Contamination of Groundwater Through a Multi-model Framework of Statistical Assessment and Natural Remediation Techniques

  • Chapter
  • First Online:
Emerging Issues in the Water Environment during Anthropocene

Abstract

The present book chapter discusses the mechanism of Arsenic and Fluoride release in the groundwater and its related toxicity. The use of spatial modelling techniques involving machine learning classification algorithms can help predict the concentration in binary outputs. The variability in the cause of occurrence of Arsenic forces researchers to try different adsorption materials that could help decrease the concentration levels of contaminants to permissible levels. The co-occurrence of Fluoride and Arsenic at places complicates both prediction as well as remediation. Therefore a multi-model technique involving statistical assessment and natural remediation is required to be used in tandem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agalakova NI, Gusev GP (2012) Molecular mechanisms of cyto-toxicity and apoptosis induced by inorganic fluoride. Int Sch Res Netw ISRN Cell Biol

    Google Scholar 

  • Amini M, Mueller K, Abbaspour KC, Rosenberg T, Afyuni M, Møller KN, Sarr M, Johnson CA (2008) Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ Sci Technol 42(10):3662–3668

    Article  Google Scholar 

  • Ayotte P, Rafiei Z, Porzio F, Marchand P (2009) Dissociative adsorption of hydrogen fluoride onto amorphous solid water. J Chem Phys 131(12):124517

    Article  Google Scholar 

  • Ayotte JD, Medalie L, Qi SL, Backer LC, Nolan BT (2017) Estimating the high-arsenic domestic-well population in the conterminous United States. Environ Sci Technol 51(21):12443–12454

    Article  Google Scholar 

  • Baek K, Kim DH, Park SW, Ryu BG, Bajargal T, Yang JS (2009) Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. J Hazard Mater 161(1):457–462

    Article  Google Scholar 

  • Balasubramanyam M, Singh LP, Rangasamy S (2012) Molecular intricacies and the role of ER stress in diabetes. Exp Diab Res. https://doi.org/10.1155/2012/958169

    Article  Google Scholar 

  • Ball AL, Rom WN, Glenne B (1983) Arsenic distribution in soils surrounding the Utah copper smelter. Am Ind Hyg Assoc J 44:341

    Article  Google Scholar 

  • Bordoloi R (2012) Existence of arsenic in groundwater and its effect on health. Int J Comput Appl Eng Sci 2(3):270–272

    Google Scholar 

  • Burgess WG, Hoque MA, Michael HA, Voss CI, Breit GN, Ahmed KM (2010) Vulnerability of deep groundwater in the Bengal aquifer system to contamination by arsenic. Nat Geosci 3(2):83

    Article  Google Scholar 

  • Chakraborti D, Sengupta MK, Rahman MM, Ahmed S (2004) Groundwater Arsenic contamination and its health effect in Ganga–Meghna–Brahmaputra plain. J Environ Monit 6:74–84

    Google Scholar 

  • Chen H, Yan M, Yang X, Chen Z, Wang G, Schmidt-Vogt D, Xu Y, Xu J (2012) Spatial distribution and temporal variation of high fluoride contents in groundwater and prevalence of fluorosis in humans in Yuanmou County, Southwest China. J Hazard Mater 235–236:201–209

    Article  Google Scholar 

  • Cherukumilli K, Delaire C, Amrose S, Gadgil AJ (2017) Factors governing the performance of bauxite for fluoride remediation of groundwater. Environ Sci Technol 51(4):2321–2328

    Article  Google Scholar 

  • Chowdhury TR, Basu GK, Mandal BK, Biswas BK, Samanta G, Chowdhury UK, Chanda CR, Lodh D, Roy SL, Saha KC, Roy S (1999) Arsenic poisoning in the Ganges delta. Nature 401(6753):545–546

    Article  Google Scholar 

  • Cummings DE, Caccavo F, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilarity Fe (III) reducing bacterium Shewanella alga BrY. Environ Sci Technol:723–729

    Google Scholar 

  • Cundy AB, Hopkinson L, Whitby RL (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400(1–3):42–51

    Article  Google Scholar 

  • Das S, Pradhan GK, Das S, Nath D, Saha KD (2015) Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage. Chem Biol Interact 242:281–289

    Article  Google Scholar 

  • Das N, Deka JP, Shim J, Patel AK, Kumar A, Sarma KP, Kumar M (2016) Effect of river proximity on the arsenic and fluoride distribution in the aquifers of the Brahmaputra floodplains, Assam, northeast India. Groundw Sustain Dev 2:130–142

    Article  Google Scholar 

  • Das N, Sarma KP, Patel AK, Deka JP, Das A, Kumar A, ..., Kumar M (2017) Seasonal disparity in the co-occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, Northeast India. Environ Earth Sci 76(4):183

    Google Scholar 

  • Dowling CB, Poreda RJ, Basu AR, Peters SL (2002) Geochemical study of arsenic release mechanisms in the Bengal basins groundwater. Water Resour Res 38:X1–X20

    Article  Google Scholar 

  • FAO (1973) The state of food and agriculture. Food and Agriculture Organization of the United Nation

    Google Scholar 

  • Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell, Lorna (2006) Fluoride in drinking water. World Health Organization

    Google Scholar 

  • Frencken JE (1992) Endemic Fluorosis in developing countries, causes effects and possible solution. Report of a symposium held in Delft, Netherlands

    Google Scholar 

  • Goswami M, Das SK, Sarma R, Moitra T, Baruah M (2015) Arsenic contamination: a case study from five districts of Assam, India. Clarion 4(2):25–29

    Google Scholar 

  • Goyal RK, Sharma M (2015) Groundwater quality assessment of arid northern Gujarat (India). Ann Arid Zones 54(1 & 2):27–33

    Google Scholar 

  • Guo H, Stüben D, Berner Z (2007) Adsorption of arsenic (III) and arsenic (V) from groundwater using natural siderite as the adsorbent. J Colloid Interface Sci 315(1):47–53

    Article  Google Scholar 

  • Hodge HC, Smith FA (1965) Fluor Chem 4. ISBN 978-0-12-395577-7

    Google Scholar 

  • Hussain J, Sharma KC, Hussain I (2004) Fluoride in drinking water and its ill affect on human health: a review. J Tissue Res 4:263–273

    Google Scholar 

  • Hussain I, Hussain J, Sharma KC, Ojha KG (2012) Fluoride in drinking water and health hazard: some observations on fluoride distribution in Rajasthan in environmental scenario of 21st century, New Delhi, pp 355–374

    Google Scholar 

  • Jha SK, Nayak AK, Sharma YK (2010) Potential fluoride contamination in the drinking water of Marks Nagar, Unnao district, Uttar Pradesh, India. Environ Geochem Health 32(3):217–226

    Article  Google Scholar 

  • Johnston RB, Hanchett S, Khan MH (2010) The socio-economics of arsenic removal. Nat Geosci 3(1):2

    Article  Google Scholar 

  • Joshi DC, Dhir RP (1989) Management of loamy sandy soil irrigated with high RSC water. In: Proceedings of international symposium on managing sandy soils, CAZRI Jodhpur, pp 474–487

    Google Scholar 

  • Kateja A, Joshi SC (2017) Fluoride and its impact in Rajasthan: a review. World J Pharm Res 6(5):421–438

    Google Scholar 

  • Kitano Y, Furukawa Y (1972) Distribution of fluoride in waters of Tokyo Bay. J Oceanogr 28(3):121–125

    Article  Google Scholar 

  • Kumar M, Kumar P, Ramanathan AL, Bhattacharya P, Thunvik R, Singh UK, Tsujimura M, Sracek O (2010) Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. J Geochem Explor 105(3):83–94

    Article  Google Scholar 

  • Kumar M, Ramanathan AL, Rahman MM, Naidu R (2016) Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India. Sci Total Environ 573:1103–1114

    Article  Google Scholar 

  • Kumar M, Patel AK, Das A, Kumar P, Goswami R, Deka P, Das N (2017) Hydrogeochemical controls on mobilization of arsenic and associated health risk in Nagaon district of the central Brahmaputra Plain, India. Environ Geochem Health, 39(1):161–178

    Article  Google Scholar 

  • Langner P, Mikutta C, Kretzschmar R (2012) Arsenic sequestration by organic sulphur in peat. Nat Geosci 5(1):66

    Article  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409(6820):579

    Article  Google Scholar 

  • Madejón P, Lepp NW (2007) Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate: a sustainable natural remediation? Sci Total Environ 379(2–3):256–262

    Article  Google Scholar 

  • Malago J, Makoba E, Muzuka ANN (2017) Fluoride levels in surface and groundwater in Africa: a review. Am J Water Sci Eng 3(1):1–17

    Article  Google Scholar 

  • Mallick S, Rajagopal NR (1996) Groundwater development in the arsenic affected alluvial belt of West Bengal—some questions. Curr Sci:956–958

    Google Scholar 

  • Mandal BK, Chowdhury GTR, Samanta G, Mukherjee D, Chanda CR, Saha KC, Chakraborti D (1998) Impact of safe water for drinking on five families for two years in West Bengal, India. Sci Total Environ:185–201

    Google Scholar 

  • McArthur JM, Ravenscroft P, Safiullah S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117

    Article  Google Scholar 

  • Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144(1):51–61

    Article  Google Scholar 

  • Moi WM, Wai CM (1994) Mobilization of arsenic in contaminated river sediment. Arsenic in the environment, pp 99–118

    Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137(1):464–479

    Article  Google Scholar 

  • Morss WL (1927) The plant colonization of Merse lands in the estuary of the River Nith. Br Ecol Soc 15

    Article  Google Scholar 

  • Munoth P, Tiwari K, Goyal R (2015) Fluoride and nitrate groundwater contamination in India: a review. In: Hydro 2015 international, 20th international conference on hydraulics, water resources and river engineering

    Google Scholar 

  • Nagarnaika PB, Bhole AG, Nataranjan GS (2012) Arsenic in drinking water: 2001 update. National Academy Press, Washington DC

    Google Scholar 

  • Neumann RB, Ashfaque KN, Badruzzaman ABM, Ali MA, Shoemaker JK, Harvey CF (2010) Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat Geosci 3(1):46

    Article  Google Scholar 

  • Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahmanñ M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395(6700):338

    Article  Google Scholar 

  • Palahouane B, Drouiche N, Aoudj S, Bensadok K (2015) Cost-effective electrocoagulation process for the remediation of fluoride from pretreated photovoltaic wastewater. J Ind Eng Chem 22:127–131

    Article  Google Scholar 

  • Patel AK, Das N, Goswami R, Kumar M (2019a) Arsenic mobility and potential co-leaching of fluoride from the sediments of three tributaries of the Upper Brahmaputra floodplain, Lakhimpur, Assam, India. J Geochem Explor 203:45–58

    Article  Google Scholar 

  • Patel AK, Das N, Kumar M (2019b) Multilayer arsenic mobilization and multimetal co-enrichment in the alluvium (Brahmaputra) plains of India: A tale of redox domination along the depth. Chemosphere 224:140–150

    Article  Google Scholar 

  • Peckham S, Awofeso N (2014) Water fluoridation: a critical review of the physiological effects of ingested fluoride as a public health intervention. Sci World J 2014:1–10

    Article  Google Scholar 

  • Perel’man AI, Levinson AA (1977) Geochemistry of elements in the supergene zone. Wiley

    Google Scholar 

  • Podgorski JE, Eqani SAMAS, Khanam T, Ullah R, Shen H, Berg M (2017) Extensive arsenic contamination in high-pH unconfined aquifers in the Indus valley. Sci Adv 3(8):e1700935

    Article  Google Scholar 

  • Podgorski JE, Labhasetwar P, Saha D, Berg M (2018) Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environ Sci Technol 52(17):9889–9898

    Article  Google Scholar 

  • Polya D, Charlet L (2009) Environmental science: rising arsenic risk? Nat Geosci 2(6):383

    Article  Google Scholar 

  • Raj S, Shaji A (2016) Design and implementation of reconfigurable digital filter bank for hearing aid. In 2016 International conference on emerging technological trends (ICETT). IEEE, pp 1–6

    Google Scholar 

  • Ramasesha CS, Kumar ES, Suresh S, Kumar AR (2002) Occurrence of nitrate and fluoride in groundwater and their impact in and around Dindigul, Tamil Nadu, India. In: International conference on sustainable development and management of groundwater resources in semi arid regions with special reference to hard rocks, pp 31–39

    Google Scholar 

  • Richard LA (1954) Diagnosis and improvement of saline and alkaline soils. Handbook no 60, US department of Agriculture, Washington USA, 160 pp

    Google Scholar 

  • Rodríguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science 341(6148):866–868

    Article  Google Scholar 

  • Saunders JA, Lee MK, Shamsudduha M, Dhakal P, Uddin A, Chowdury MT, Ahmed KM (2008) Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters. Appl Geochem 23(11):3205–3214

    Article  Google Scholar 

  • Saxena VK, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geolo:731–736

    Article  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35(4):743–759

    Article  Google Scholar 

  • Solangi IB, Memon S, Bhanger MI (2009) Removal of fluoride from aqueous environment by modified Amberlite resin. J Hazard Mater 171(1–3):815–819

    Article  Google Scholar 

  • Susheela AK (2001) Fluorosis: Indian scenario: a treatise on fluorosis. Fluorosis research and rural development foundation

    Google Scholar 

  • Sutton RN (1959) Fluoridation: errors and omissions in experimental trials. Melbourne University Press

    Google Scholar 

  • Thakur JK, Thakur RK, Ramanathan AL, Kumar M, Singh SK (2011) Arsenic contamination of groundwater in Nepal—an overview. Water 3(1):1–20

    Article  Google Scholar 

  • Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20(6):659–667

    Article  Google Scholar 

  • Turner BD, Binning PJ, Sloan SW (2008) A calcite permeable reactive barrier for the remediation of fluoride from spent potliner (SPL) contaminated groundwater. J Contam Hydrol 95(3–4):110–120

    Article  Google Scholar 

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366(2–3):701–721

    Article  Google Scholar 

  • Whitford GM (1996) The metabolism and toxicity of fluoride. Karger Publishers

    Google Scholar 

  • Winkel LH, Trang PTK, Lan VM, Stengel C, Amini M, Ha NT, Viet PH, Berg M (2011) Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc Natl Acad Sci 108(4):1246–1251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Patel, A.K., Kumar, M. (2020). Mitigating the Risk of Arsenic and Fluoride Contamination of Groundwater Through a Multi-model Framework of Statistical Assessment and Natural Remediation Techniques. In: Kumar, M., Snow, D., Honda, R. (eds) Emerging Issues in the Water Environment during Anthropocene. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9771-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9771-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9770-8

  • Online ISBN: 978-981-32-9771-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics