Skip to main content

Role of Phytoremediation Strategies in Removal of Heavy Metals

  • Chapter
  • First Online:
Emerging Issues in the Water Environment during Anthropocene

Abstract

Heavy metal pollution is a threat to the environment in the current world as they are non-biodegradable. Phytoremediation has emerged as a technology for removal of contaminants from the polluted environmental components like water, soil and air. It has attracted attention in recent years for environmental benefits through the implementation of low cost materials. Various mechanisms of heavy metal phytoremediation are phytoextraction, rhizofiltration, phytostabilization and phytovolatilization. This paper reviews phytoremediation strategies that are being used for heavy metal remediation. The full scale application of phytoremediation technology is obstructed due to dearth of information about uptake and translocation of metals, role of chelants in metal enrichment and after effects of the technology. Hence, a multidisciplinary perception is required to make it as a commercially suitable technology for heavy metal remediation. It has a great potential as a feasible alternative to traditional remediation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agalou A, Roussis A, Spaink HP (2005) The Arabidopsis selenium-binding protein confers resistance to toxic levels of selenium. Funct Plant Biol 31:881–890

    Article  Google Scholar 

  • Akesson B, Skerfving S (1985) Exposure in welding of high nickel alloy. Int Arch Occup Environ Health 56:111–117

    Article  Google Scholar 

  • Anawar HM, Garcia-Sanchez A, Tari Kul Alam M, Rahman M (2008) Phytofiltration of water polluted with arsenic and heavy metals. Int J Environ Pollut 33:292–312

    Article  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2005) Toxicological profile information sheet. Online at http://www.atsdr.cdc.gov/toxprofiles/tp15.html

  • Azaizeh HA, Gowthaman S, Terry N (1997) Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland. J Environ Qual 26:666–672

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metal elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    Google Scholar 

  • Baker AJM, Walker PL (1989) Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity. Chem Spec Bioavailab 1:7–17

    Article  Google Scholar 

  • Bañuelos G, Terry N, LeDuc DL, Pilon-Smits EA, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  Google Scholar 

  • Bañuelos G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  Google Scholar 

  • Baudouin C, Charveron M, Tarrouse R, Gall Y (2002) Environmental pollutants and skin cancer. Cell Biol Toxicol 18(4):341–348

    Article  Google Scholar 

  • Beath OA, Eppsom HF, Gilbert GS (1937) Selenium distribution in and seasonal variation of vegetation type occurring on seleniferous soils. J Am Pharm Assoc 26:394–405

    Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  Google Scholar 

  • Bechsgaard JS, Castric V, Charlesworth D, Vekemans X, Schierup MH (2006) The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr. Mol Biol Evol 23:1741–1750

    Article  Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32:271–280

    Article  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Article  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  • Bidwell SD, Woodrow IE, Batianoff GN, Sommer-Knudsen J (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct Plant Biol 29:899–905

    Article  Google Scholar 

  • Bittsanszky A, Komives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254

    Article  Google Scholar 

  • Bizily S, Rugh CC, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana plants confer resistance to organomercurial. Proc Natl Acad Sci U S A 96:6808–6813

    Article  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    Article  Google Scholar 

  • Boivin K, Acarkan A, Mbulu RS, Clarenz O, Schmidt R (2004) The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae: a comparison of the Arabidopsis and Capsella rubella genomes. Plant Physiol 135:735–744

    Article  Google Scholar 

  • Boominathan R, Doran PM (2003a) Organic acid complexation, heavy metal distribution and the effects of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechnol 101:131–146

    Article  Google Scholar 

  • Boominathan R, Doran PM (2003b) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 20:158–167

    Article  Google Scholar 

  • Boominathan R, Saha-Chaudhury NM, Sahajwalla V, Doran PM (2004) Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnol Bioeng 86:243–250

    Article  Google Scholar 

  • Boonyapookana B, Parkplan P, Techapinyawat S, DeLaune RD, Jugsujinda A (2005) Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum) and vetiver (Vetiveria zizanioides). J Environ Sci Health Part A 40:117–137

    Article  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environ Sci Technol 38:5797–5802

    Article  Google Scholar 

  • Brooks RR (1998) Phytoremediation by volatilization. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration, and phytomining. CAB International, Wallingford, p 384

    Google Scholar 

  • Caille N, Swanwick S, Zhao FJ, McGrath SP (2004) Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Environ Pollut 132:113–120

    Article  Google Scholar 

  • Caires EF, Corrêa JCL, Churka S, Barth G, Garbuio FJ (2006) Surface application of lime ameliorates subsoil acidity and improves root growth and yield of wheat in an acid soil under no-till system. Sci Agric (Piracicaba, Braz) 63:502–509

    Article  Google Scholar 

  • Chandra Sekhar K, Kamala CT, Chary NS, Balaram V, Garcia G (2005) Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58:507–514

    Article  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  Google Scholar 

  • Chaney RL, Angle JS, Li YM, Baker AJM, Reeves RD, Roseberg RJ, Volk VV, Kukier U, Peters C, Zdimal K, Nelkin JP (1999) Phytoextraction of soil nickel using Alyssum species. In: Wentzel WW, Adriano DC, Alloway B, Doner HE, Keller C, Lepp NW, Mench M, Naidu R, Pierzynski GM (eds) Proceedings of the extended abstracts from the 5th international conference on the biogeochemistry of trace elements, Vienna, Austria, 11–15 July 1999. International Society of Trace Element Research, Vienna, Italy, pp 14–15

    Google Scholar 

  • Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (2000) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL, pp 131–160

    Google Scholar 

  • Chen T, Fan Z, Lei M, Huang Z, Wei C (2002) Effect of phosphorus on arsenic accumulation in As-hyperaccumulator Pteris vittata L. and its implication. Chin Sci Bull 47:1876–1879

    Article  Google Scholar 

  • Chen Y, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187–196

    Article  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  Google Scholar 

  • Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyper-accumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798

    Article  Google Scholar 

  • Cooney CM (1996) Sunflowers remove radionuclides from water in ongoing phytoremediation field tests. Environ Sci Technol 30:194A

    Article  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  Google Scholar 

  • Cruz-Ortega R, Ownby JD (1993) A protein similar to PR (pathogenesis-related) proteins is elicited by metal toxicity in wheat roots. Physiol Plant 89:211–219

    Article  Google Scholar 

  • Cunningham SD (1996) The phytoremediation of soils contaminated with organic pollutants: problems and promise. In: International phytoremediation conference, 8–10 May 1996, Arlington, VA

    Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  Google Scholar 

  • Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated soil and water. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. ACS Symposium Series 664. American Chemical Society, Washington DC

    Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of Nramp1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  Google Scholar 

  • Dahmani-Muller H, Oort F, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    Article  Google Scholar 

  • Das, N., Patel, A. K., Deka, G., Das, A., Sarma, K. P., & Kumar, M. (2015). Geochemical controls and future perspective of arsenic mobilization for sustainable groundwater management: a study from Northeast India. Groundw Sustain Dev 1(1-2):92–104

    Google Scholar 

  • Davies JE (1986) Occupational asthma caused by nickel salts. J Soc Occup Med 36:29–31

    Article  Google Scholar 

  • De la Fuente JM, Ramírez-Rodríguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  Google Scholar 

  • Dhanker OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase, ACR2. Proc Natl Acad Sci U S A 103:5413–5418

    Article  Google Scholar 

  • Dickinson NM, Baker AJM, Doronila A, Laidlaw A, Reeves RD (2009) Phytoremediation of inorganics, realism and synergies. Int J Phytoremed 11:97–114

    Article  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  Google Scholar 

  • Dushenkov S, Kapulnik Y (2000) Phytofiltration of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 89–106

    Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997a) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474

    Article  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997b) Phytoremediation: a novel approach to an old problem. In: Wise DL (ed) Global environmental biotechnology. Elsevier Science B.V., Amsterdam, pp 563–572

    Google Scholar 

  • Dutilleul C, Jourdain A, Bourguignon J, Hugouvieux V (2008) The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol 147:239–251

    Article  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  Google Scholar 

  • Elless MP, Poynton CY, Willms CA, Doyle MP, Lopez AC, Sokkary DA, Ferguson BW, Blaylock MJ (2005) Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water. Water Res 39:3863–3872

    Article  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1

    Article  Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pterisvittata. Plant Physiol 141:1544–1554

    Article  Google Scholar 

  • Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 3–11

    Google Scholar 

  • Ensley BD, Raskin I, Salt DE (1997) Phytoremediation applications for removing heavy metal contamination from soil and water. In: Sayler GS (ed) Biotechnology in the sustainable environment. Plenum Press, New York, pp 59–64

    Chapter  Google Scholar 

  • EPA (Environmental Protection Agency) (1998) A citizen’s guide to phytoremediation health. Office of Solid Waste and Emergency Response. EPA 542-F-98-011 EPA-600/8-82-007F. Final report, Washington, DC

    Google Scholar 

  • EPA (Environmental Protection Agency) (2005) Site profiles. Combustion Inc. Superfund Site, Washington, DC

    Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for gene PsMTA function. Plant Mol Biol 20:1019–1028

    Article  Google Scholar 

  • Ezaki B, Yamamoto Y, Matsumoto H (1995) Cloning and sequencing of the cDNAs induced by aluminium treatment and Pi starvation in cultured tobacco cells. Physiol Plant 93:11–18

    Article  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545

    Article  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contamin 7:415–432

    Article  Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. J Sci Total Environ 284:27–35

    Article  Google Scholar 

  • Frankenberger WTJR, Arshad M (2002) Volatilisation of arsenic. In: Frankenberger WT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 363–380

    Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  Google Scholar 

  • Gao S, Tanji KK, Lin ZQ, Terry N, Peters DW (2003) Selenium removal and mass balance in a constructed flow-through wetland. J Environ Qual 32:1557–1570

    Google Scholar 

  • Garbisu C, Alkorta I (1997) Bioremediation: principles and future. J Clean Technol Environ Toxicol Occup Med 6(5):351–366

    Google Scholar 

  • Garcia G, Faz A, Cunha M (2004) Performance of Piptatherum miliaceum (smilo grass) in edaphic Pb and Zn phytoremediation over a short growth period. Int J Biodeter Biodegr 54:245–250

    Article  Google Scholar 

  • Gatliff EG (1994) Vegetative remediation process offers advantages over traditional pump-and-treat technologies. Remediation 4:343–352

    Article  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    Article  Google Scholar 

  • Gogoi A, Mazumder P, Tyagi VK, Chaminda GT, An AK, Kumar M (2018) Occurrence and fate of emerging contaminants in water environment: a review. Groundw Sustain Dev 6:169–180

    Article  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53

    Article  Google Scholar 

  • Gueldry O, Lazard M, Delort F, Dauplais M, Grigoras I, Blanquet S, Plateau P (2003) Ycf1p-dependent Hg(II) detoxification in Saccharomyces cerevisiae. Eur J Biochem 270:2486–2496

    Article  Google Scholar 

  • Hamer DH (1986) Metallothioneins. Annu Rev Biochem 55:913–951

    Article  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  Google Scholar 

  • Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: toxicity and tolerance in plants. J Environ Biol 30:165–174

    Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196:277–281

    Article  Google Scholar 

  • Heaton ACP, Rugh CL, Wang N, Meagher RB (1998) Phytoremediation of mercury—and methylmercury—polluted soils using genetically engineered plants. J Soil Contamin 7:497–510

    Article  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–134

    Article  Google Scholar 

  • Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28:367–376

    Google Scholar 

  • Huang JW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    Article  Google Scholar 

  • Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40:977–982

    Article  Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    Article  Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum). J Appl Biosci 10:491–499

    Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Seberita acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  Google Scholar 

  • Jambhulkar HP, Juwarkar AA (2009) Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxicol Environ Saf 72:1122–1128

    Article  Google Scholar 

  • Johnson D, Hale B (2004) White birch (Betula papyrifera Marshall) foliar litter decomposition in relation to trace metal atmospheric inputs at metal contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn Noranda, Quebec, Canada. Environ Pollut 127:65–72

    Article  Google Scholar 

  • Karkhanis M, Jadia CD, Fulekar MH (2005) Rhizofilteration of heavy metals from coal ash leachate. Asian J Water Environ Pollut 3:91–94

    Google Scholar 

  • Kerkeb L, Kramer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    Article  Google Scholar 

  • Knasmuller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, God R, Kundi M (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res 420(1–3):37–48

    Article  Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2663–2667

    Article  Google Scholar 

  • Koch MA, Kiefer M (2005) Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species—Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. Am J Bot 92:761–767

    Article  Google Scholar 

  • Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Article  Google Scholar 

  • Krämer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol 115:1641–1650

    Article  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  Google Scholar 

  • Kubota H, Takenaka C (2003) Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytoremed 5:197–201

    Article  Google Scholar 

  • Kuittinen H, de Haan AA, Vogl C, Oikarinen S, Leppala J, Koch M, Mitchell-Olds T, Langley CH, Savolainen O (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana. Genetics 168:1575–1584

    Article  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  Google Scholar 

  • Kumar M, Patel AK, Das A, Kumar P, Goswami R, Deka P, Das N (2017) Hydrogeochemical controls on mobilization of arsenic and associated health risk in Nagaon district of the central Brahmaputra Plain, India. Environ Geochem Health 39(1):161–178

    Article  Google Scholar 

  • Leblanc M, Petit D, Deram A, Robinson B, Brooks RR (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ Geol 94:109–113

    Article  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang CY, Tagmount A, deSouza M, Neuhier lB, Böck A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  Google Scholar 

  • LeDuc DL, AbdelSamie M, Montes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    Article  Google Scholar 

  • Lehoczky E, Szabó L, Horváth S (1998) Cadmium uptake by plants in different soils. Commun Soil Sci Plant Anal 29:1903–1912

    Article  Google Scholar 

  • Lehoczky E, Marth P, Szabados I, Palkovics M, Lukács P (2000) Influence of soil factors on the accumulation of cadmium by lettuce. Commun Soil Sci Plant Anal 31:2425–2431

    Article  Google Scholar 

  • Lewandowski I, Schmidt U, Londo M, Faaij A (2006) The economic value of the phytoremediation function—assessed by the example of cadmium remediation by willow (Salix ssp). Agric Syst 89:68–89

    Article  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci U S A 94:42–47

    Article  Google Scholar 

  • Li YM, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003a) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468

    Article  Google Scholar 

  • Li YM, Chaney RL, Brewer EP, Roseberg RJ, Angle JS, Baker AJM, Reeves RD, Nelkin J (2003b) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  Google Scholar 

  • Lin ZQ, Schemenauer RS, Cervinka V, Zayed A, Lee A, Terry N (2000) Selenium volatilization from the soil—Salicornia bigelovii for treatment system for the remediation of contaminated water and soil in the San Joaquin valley. J Environ Qual 29:1048–1056

    Google Scholar 

  • Liu W, Wensheng S, Chongyu L (2004) Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull 49:29–32

    Article  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, Mcgrath SP (2001) Phytoremediation of heavy-metal contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  Google Scholar 

  • Lugli F, Mahler CF (2016) A soil-plant model applied to phytoremediation of metals. Int J Phytoremed 18:295–307

    Article  Google Scholar 

  • Lupankwa K, Love D, Mapani BS, Mseka S (2004) Impact of a base metal slimes dam on water systems, Madziwa Mine, Zimbabwe. Phys Chem Earth 29:1145–1151

    Article  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  Google Scholar 

  • Macek T, Kotrba P, Svatos A, Martina Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Article  Google Scholar 

  • Maier R (2004) Phytostabilization of mine tailings in the southwestern United States: plantsoil-microbe interactions and metal speciation dynamics, superfund project. Superfund Basic Research Program. University of Arizona

    Google Scholar 

  • Marques APGC, Moreira H, Rangel AOSS, Castro PML (2009) Arsenic, lead and nickel accumulation in Rubus ulmifolius growing in contaminated soil in Portugal. J Hazard Mater 165:174–179

    Article  Google Scholar 

  • Martinez M, Bernal P, Almela C, Velez D, Garcia-Agustin P, Serrano R, Navarro-Avino J (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485

    Article  Google Scholar 

  • Matsumoto H (2006) Molecular aspect of Al tolerance in crop plants: novel Al-activated malate transporter gene in wheat roots. Soil Sci Plant Nutr 51:613–615

    Article  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 201–221

    Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  Google Scholar 

  • Memon AR, Schroder P (2009) Implications to metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  Google Scholar 

  • Memon AR, Yildizhan Y, Demirel U (2006) Cu tolerance and accumulation in Brassica nigra and development of in vitro regeneration system for phytoremediation. In: COST action 859: phytotechnologies to promote sustainable land use and improve food safety. WG2 and WG3 workshop -omics approaches and agricultural management: driving forces to improve food quality and safety? Universite Jean Monnet et Ecole Nationale Superieure des Mines, Saint-Etienne, France, pp 37–38

    Google Scholar 

  • Memon AR, Yildizhan Y, Keskin BC (2008) Enhanced Cu tolerance in Brassica nigra (L.) is associated with increased transcription level of γ-glutamylcysteine synthatase (γ-ECS) and phytochelatin synthase (PCS). In: COST action 859: genes and proteins involved in steps of phytoextraction and degradation of pollutants, workshop WG2: exploiting “-omics” approaches in phytotechnologies. University of Verona, Verona, Italy, p 68

    Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  Google Scholar 

  • Milla MAR, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under Al stress in rye. Plant Physiol 130:1706–1716

    Google Scholar 

  • Miller R (1996) Phytoremediation. Technology overview report, vol 3. Ground-Water Remediation Technologies Analysis Centre, Oct 1996

    Google Scholar 

  • Ming F, Liang B, Lou YX, Wang JW, Ye MM, Shen DL (2002) Expression of aluminum induced photosynthesis related genes in common wild rice (Oryza rufipogon L.). J Fudan Univ (Nat Sci) 41:679–683

    Google Scholar 

  • Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89

    Article  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2004) Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environ Pract 6:165–175

    Article  Google Scholar 

  • Moreno FN, Anderson CW, Stewart RB, Robinson BH (2005) Mercury volatilisation and phytoextraction from base-metal mine tailings. Environ Pollut 136:341–352

    Article  Google Scholar 

  • Nie J, Liu X, Wang Q (2004) Effects of nutrient elements on the lead uptake by hyperaccumulators. Ecol Environ 13:306–309

    Google Scholar 

  • NRC (National Research Council) (2005) Mineral tolerance of animals, 2nd revised edn. National Academies Press, Washington, DC

    Google Scholar 

  • Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology 13:637–646

    Article  Google Scholar 

  • Pandey VC, Pandey DN, Singh N (2015) Sustainable phytoremediation based on naturally colonizing and economically valuable plants. J Clean Prod 86:37–39

    Article  Google Scholar 

  • Parker DR, Feist LJ, Varvel TW, Thomason DN, Zhang YQ (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 249:157–165

    Google Scholar 

  • Patel AK, Das N, Goswami R, Kumar M (2019a) Arsenic mobility and potential co-leaching of fluoride from the sediments of three tributaries of the Upper Brahmaputra floodplain, Lakhimpur, Assam, India. J Geochem Explor 203:45–58

    Article  Google Scholar 

  • Patel AK, Das N, Kumar M (2019b) Multilayer arsenic mobilization and multimetal co-enrichment in the alluvium (Brahmaputra) plains of India: a tale of redox domination along the depth. Chemosphere 224:140–150

    Article  Google Scholar 

  • Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy AS (2006) Phytoremediation and hyperaccumulator plants. In: Tamas M, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification. Topics in current genetics, vol 14. Springer, Berlin, pp 299–340

    Google Scholar 

  • Persans MW, Yan X, Patnoe JML, Kramer U, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Halacsy). Plant Physiol 121:1117–1126

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–219

    Article  Google Scholar 

  • Pilon-Smits EAH, Desouza MP, Hong G, Amini A, Bravo RC, Payabyab ST, Terry N (1999a) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 28:1011–1017

    Article  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu YL, Tay JC, Bravo RC, Chen Y, Leustek T, Terry N (1999b) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  Google Scholar 

  • Qiu R-L, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12

    Article  Google Scholar 

  • Quesada T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing and translation. Plant Physiol 138:1–17

    Article  Google Scholar 

  • Rathinasabapathi B, Wu S, Sundaram S, Rivoal J, Srivastava M, Ma LQ (2006) Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli. Plant Mol Biol 62:845–857

    Article  Google Scholar 

  • Reeves RD, Brooks RR (1983) European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18:275–283

    Article  Google Scholar 

  • Richards KD, Schott EJ, Sharma Y, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  Google Scholar 

  • Roosens NHCJ, Willems G, Godé C, Courseaux A, Saumitou-Laprade P (2008a) The use of comparative genome analysis and synthetic relationships allows extrapolating the position of Zn tolerance QTL regions from Arabidopsis halleri into Arabidopsis thaliana. Plant Soil 306:105–116

    Article  Google Scholar 

  • Roosens NHCJ, Willems G, Saumitou-Laprade P (2008b) Using Arabidopsis to explore Zn tolerance and hyperaccumulation. Trends Plant Sci 23:208–215

    Article  Google Scholar 

  • Rugh CC, Summers AO, Meagher RB (1996) Mercuric ion reductase and resistance in transgenic Arabidopsis thaliana expressing modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    Article  Google Scholar 

  • Rugh CL, Bizily SP, Meagher RB (2000) Phytoreduction of environmental mercury pollution. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 151–170

    Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219

    Article  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    Article  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    Article  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  Google Scholar 

  • Samuelsen AI, Martin RC, Mok DWS, Machteld CM (1998) Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol 118:51–58

    Article  Google Scholar 

  • Sanitàdi Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  Google Scholar 

  • Schat H, Llugany M, Voojis R, Harley-Whitaker J, Bleeker PM (2002) The role of Phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  Google Scholar 

  • Schnoor JL (1997) Phytoremediation, technology overview report (TE-97-01), Series E, vol 1. Ground-Water Remediation Technologies Analysis Center, Oct 1997

    Google Scholar 

  • Schröder P, Herzig R, Bojnov B, Ruttens A, Nehnevajova E, Stamatiadis S, Memon AR, Vassilev A, Caviezel M, Vangronsveld J (2008) Bioenergy to save the world-novel plants for bioenergy production. Environ Sci Pollut Res 15:196–204

    Article  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 24:27–35

    Article  Google Scholar 

  • Seenivasan N, Robert HS, Saha UK, Ma LQ (2008) Phytofiltration of arsenic-contaminated groundwater using Pteris Vittata L.: effect of plant density and nitrogen and phosphorus levels. Int J Phytoremed 10:222–235

    Article  Google Scholar 

  • Shah K, Nongkynrih J (2007) Metal hyperaccumulation and bioremediation. Biol Planta 51(4):618–634

    Article  Google Scholar 

  • Shao S, Zheng B, Li X, Wang M, Liu X, Luo C, Su H (2006) Se-hyperaccumulator found for the first time in Enshi, Hubei, China. Chin J Geochem 25:134

    Article  Google Scholar 

  • Sharma NC, Gardea-Torresdey JL, Parsons J, Sahi SV (2004) Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environ Toxicol Chem 23:2068–2073

    Article  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Min Eng 22:1007–1019

    Article  Google Scholar 

  • Shu W, Yang K, Zhang Z, Yang B, Lan C (2001) Flora and heavy metals in dominant plants growing on an ancient copper spoil heap on Tonglushan in Hubei province, China. Chin J Appl Environ Biol 7:7–12

    Google Scholar 

  • Singh ND, Li M, Lee SB, Schnell D, Daniell H (2008) Arabidopsis Tic40 expression in tobacco chloroplasts results in massive proliferation of the inner envelope membrane and upregulation of associated proteins. Plant Cell 20(12):3405–3417

    Article  Google Scholar 

  • Sivaguru M, Ezaki B, He ZH, Tong H, Osawa H, Baluska F, Volkmann D, Matsumoto H (2003) Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol 132:2256–2266

    Article  Google Scholar 

  • Snowden KC, Gardner RC (1993) Five genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol 103:856–861

    Article  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  Google Scholar 

  • Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364:24–31

    Article  Google Scholar 

  • Sun Y, Zhou Q, Liu W, An J, Xu ZQ, Wang L (2009) Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd hyperaccumulator and As-excluder Bidens pilosa L. J Hazard Mater 165:1023–1028

    Article  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  Google Scholar 

  • Suszcynsky EM, Shann JR (1995) Phytotoxicity and accumulation of mercury subjected to different exposure routes. Environ Toxicol Chem 14:61–67

    Article  Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis thaliana. Plant Physiol 146:1219–1230

    Article  Google Scholar 

  • Tang YL, Qiu RL, Zeng XW, Fang XH (2005) A new found Pb/Zn/Cd hyperaccumulator: Arabis paniculata L. Acta Sci Nat Univ Sunyat 44:135–136

    Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed AM (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    Article  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  Google Scholar 

  • Thangavel P, Subhuram CV (2004) Phytoextraction—role of hyperaccumulators in metal contaminated soils. Proc Indian Natl Sci Acad Part B 70:109–130

    Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Ostenkowski P, Urbanczyk N, Wiesend WN, Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19:273–280

    Article  Google Scholar 

  • Tian JL, Zhu HT, Yang YA, He YK (2004) Organic mercury tolerance, absorption and transformation in Spartina plants. J Plant Physiol Mol Biol 30:577–582

    Google Scholar 

  • Turpeinem R, Pantsar-Kallio M, Haggblom M, Kairesalo T (1999) Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci Total Environ 236:173–180

    Article  Google Scholar 

  • Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumloffel D, Lebrun M, Lobinski R (2003) Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography—inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal Chem 75:2740

    Article  Google Scholar 

  • Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  Google Scholar 

  • Van Hoewyk D, Takahashi H, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Plant Physiol 132:236–253

    Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EA (2003) Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea. Planta 218:71–78

    Article  Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118:453–461

    Article  Google Scholar 

  • Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  Google Scholar 

  • Wang J, Zhao F, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186

    Article  Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+–hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    Article  Google Scholar 

  • Wei SH, Zhou QX (2006) Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting (5 pp). Environ Sci Pollut Res 13:151–155

    Article  Google Scholar 

  • Wei CY, Chen TB, Huang ZC (2002) Cretan bake (Pteris cretica L): an arsenic accumulating plant. Acta Ecol Sin 22:777–782

    Google Scholar 

  • Wei SH, Zhou QX, Wang X, Cao W, Ren LP, Song YF (2004) Potential of weed species applied to remediation of soils contaminated with heavy metals. J Environ Sci (China) 16:868–873

    Google Scholar 

  • Willems G, Dräger DB, Courbot M, Godé C, Verbruggen N, Saumitou-Laprade P (2007) Quantitative trait loci mapping of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri. Genetics 176:659–674

    Article  Google Scholar 

  • Wong JWC, Lai KM, Su DS, Fang M (2001) Availability of heavy metals for Brassica chinensis grown in an acidic loamy soil amended with a domestic and an industrial sewage sludge. Water Air Soil Pollut 128:339–353

    Article  Google Scholar 

  • Wu J, Hsu FC, Cunningham SD (1999) Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environ Sci Technol 33:1898–1904

    Article  Google Scholar 

  • Xintaras C (1992) Impact of lead-contaminated soil on public health. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Xiong YH, Yang XE, Ye ZQ, He ZL (2004) Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health Part A 39:2925–2940

    Article  Google Scholar 

  • Xu L, Zhou S, Wu L, Li N, Cui L, Luo Y, Christie P (2009) Cd and Zn tolerance and accumulation by Sedum jinianum in East China. Int J Phytoremed 11:283–295

    Article  Google Scholar 

  • Xue SG, Chen YX, Reeves RD, Baker AJ, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399

    Article  Google Scholar 

  • Yang XE, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    Article  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  Google Scholar 

  • Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515

    Article  Google Scholar 

  • Yoon JK, Cao XD, Zhou QX, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  Google Scholar 

  • Zhang XH, Liu J, Huang HT, Chen J, Zhu YN, Wang DQ (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143

    Article  Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31

    Article  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999a) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1178

    Article  Google Scholar 

  • Zhu YL, Zayed AM, Quian JH, De Souza M, Terry N (1999b) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leela Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, L. (2020). Role of Phytoremediation Strategies in Removal of Heavy Metals. In: Kumar, M., Snow, D., Honda, R. (eds) Emerging Issues in the Water Environment during Anthropocene. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9771-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9771-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9770-8

  • Online ISBN: 978-981-32-9771-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics