Skip to main content

Cancer Immunotherapy Targeting Co-signal Molecules

  • Chapter
  • First Online:
Co-signal Molecules in T Cell Activation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1189))

Abstract

Great success of immune checkpoint blockade represented by anti-PD-1 monoclonal antibodies (mAbs) has changed a landscape of cancer immunotherapy. There is no doubt about an importance of co-signal molecules as one of the most promising targets in anti-cancer drugs. However, it should be noted that the proportion of patients who have objective and durable responses to immune checkpoint blockade remains less than 30% in majority of cancers. Thus, in addition to refine the usage of existing drugs for checkpoint blockade, identification and characterization of novel checkpoint molecules other than CTLA-4 and PD-1 is a highly anticipated research subject. In addition, agonists of stimulatory co-signal molecules have a potential to further improve anti-tumor effects, rendering them attractive in research and drug development. In this chapter, functions of co-signal molecules in anti-tumor immunity in terms of pre-clinical animal models as well as clinical trials are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreae S, Piras F, Burdin N, Triebel F (2002) Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). J Immunol 168:3874–3880

    Article  CAS  PubMed  Google Scholar 

  • Baixeras E et al (1992) Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med 176:327–337

    Article  CAS  PubMed  Google Scholar 

  • Blackburn SD et al (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Publ Group 10:29–37

    CAS  Google Scholar 

  • Brignone C, Escudier B, Grygar C, Marcu M, Triebel F (2009) A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res 15:6225–6231

    Article  CAS  PubMed  Google Scholar 

  • Brignone C et al (2010) First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med 8:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brunet JF et al (1987) A new member of the immunoglobulin superfamily--CTLA-4. Nat Int Weekly J Sci 328:267–270

    CAS  Google Scholar 

  • Chambers CA, Allison JP (1999) Costimulatory regulation of T cell function. Curr Opin Cell Biol 11:203–210

    Article  CAS  PubMed  Google Scholar 

  • Chang C-H et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauvin J-M et al (2015) TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest 125:2046–2058

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen AI et al (1999) Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11:689–698

    Article  CAS  PubMed  Google Scholar 

  • Chen S et al (2015) Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 3:149–160

    Article  CAS  PubMed  Google Scholar 

  • Chiba S et al (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Publ Group 13:832–842

    CAS  Google Scholar 

  • Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33:3541–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen AD et al (2010) Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One 5:e10436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins AV et al (2002) The interaction properties of costimulatory molecules revisited. Immunity 17:201–210

    Article  CAS  PubMed  Google Scholar 

  • Curti BD et al (2013) OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res 73:7189–7198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dardalhon V et al (2010) Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J Immunol 185:1383–1392

    Article  CAS  PubMed  Google Scholar 

  • Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  CAS  PubMed  Google Scholar 

  • Eggermont AMM et al (2015) Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 16:522–530

    Article  CAS  PubMed  Google Scholar 

  • Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH (2010) TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 235:172–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goding SR et al (2013) Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol 190:4899–4909

    Article  CAS  PubMed  Google Scholar 

  • Gramaglia I, Weinberg AD, Lemon M, Croft M (1998) Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 161:6510–6517

    CAS  PubMed  Google Scholar 

  • Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodi FS et al (2016) Evaluation of immune-related response criteria and RECIST v1.1 in patients with Advanced melanoma treated with pembrolizumab. J Clin Oncol 34:1510–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C-T et al (2004) Role of LAG-3 in regulatory T cells. Immunity 21:503–513

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-H et al (2016) Corrigendum: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 536:359–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huard B, Gaulard P, Faure F, Hercend T, Triebel F (1994) Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics 39:213–217

    Article  CAS  PubMed  Google Scholar 

  • Hui E et al (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355:1428–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston RJ et al (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26:923–937

    Article  CAS  PubMed  Google Scholar 

  • Kano Y et al (2016) Combined adjuvants of poly(I:C) plus LAG-3-Ig improve antitumor effects of tumor-specific T cells, preventing their exhaustion. Cancer Sci 107:398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keler T et al (2003) Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 171:6251–6259

    Article  CAS  PubMed  Google Scholar 

  • Kopf M et al (1999) OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11:699–708

    Article  CAS  PubMed  Google Scholar 

  • Langer CJ et al (2016) Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 17:1497–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latchman Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  CAS  PubMed  Google Scholar 

  • Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  CAS  PubMed  Google Scholar 

  • Lee H-W et al (2002) 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 169:4882–4888

    Article  PubMed  Google Scholar 

  • Mallett S, Fossum S, Barclay AN (1990) Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes--a molecule related to nerve growth factor receptor. EMBO J 9:1063–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinet L, Smyth MJ (2015) Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15:243–254

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki J et al (2010) Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A 107:7875–7880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntire JJ et al (2001) Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol 2:1109–1116

    Article  CAS  PubMed  Google Scholar 

  • Melero I et al (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3:682–685

    Article  CAS  PubMed  Google Scholar 

  • Monney L et al (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nat Int Weekly J Sci 415:536–541

    CAS  Google Scholar 

  • Nishimura H et al (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Publ Group 14:1212–1218

    CAS  Google Scholar 

  • Park J-J et al (2010) B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 116:1291–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry RV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauken KE, Wherry EJ (2014) TIGIT and CD226: tipping the balance between costimulatory and coinhibitory molecules to augment the cancer immunotherapy toolkit. Cancer Cell 26:785–787

    Article  CAS  PubMed  Google Scholar 

  • Piconese S, Valzasina B, Colombo MP (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205:825–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postow MA et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017

    Article  PubMed  PubMed Central  Google Scholar 

  • Prigent P, El mir S, Dréano M, Triebel F (1999) Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. Eur J Immunol 29:3867–3876

    Article  CAS  PubMed  Google Scholar 

  • Pulle G, Vidric M, Watts TH (2006) IL-15-dependent induction of 4-1BB promotes antigen-independent CD8 memory T cell survival. J Immunol 176:2739–2748

    Article  CAS  PubMed  Google Scholar 

  • Qureshi OS et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332:600–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangachari M et al (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3–mediated cell death and exhaustion. Nat Med 18:1394–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  CAS  PubMed  Google Scholar 

  • Robert C et al (2015) Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med 372:2521–2532

    Article  CAS  PubMed  Google Scholar 

  • Romano E et al (2014) MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: results of a phase I trial. J Transl Med 12:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakuishi K et al (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Fueyo A et al (2003) Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol 4:1093–1101

    Article  PubMed  Google Scholar 

  • Selby MJ et al (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 1:32–42

    Article  CAS  PubMed  Google Scholar 

  • Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142

    Article  CAS  PubMed  Google Scholar 

  • Shrimali RK et al (2017) Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 5:755–766

    Article  CAS  PubMed  Google Scholar 

  • Tolcher AW et al (2017) Phase Ib study of Utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with Pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res 23:5349–5357

    Article  CAS  PubMed  Google Scholar 

  • Tone M et al (2003) Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. PNAS 100:15059–15064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vetto JT et al (1997) Presence of the T-cell activation marker OX-40 on tumor infiltrating lymphocytes and draining lymph node cells from patients with melanoma and head and neck cancers. AJS 174:258–265

    Article  CAS  Google Scholar 

  • Vu MD et al (2007) OX40 costimulation turns off Foxp3+ Tregs. Blood 110:2501–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Lin GHY, McPherson AJ, Watts TH (2009) Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 229:192–215

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse P et al (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    Article  CAS  PubMed  Google Scholar 

  • Weinberg AD et al (2000) Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 164:2160–2169

    Article  CAS  PubMed  Google Scholar 

  • Wilcox RA, Tamada K, Strome SE, Chen L (2002a) Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol 169:4230–4236

    Article  CAS  PubMed  Google Scholar 

  • Wilcox RA et al (2002b) Cutting edge: expression of functional CD137 receptor by dendritic cells. J Immunol 168:4262–4267

    Article  CAS  PubMed  Google Scholar 

  • Wing K et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  CAS  PubMed  Google Scholar 

  • Workman CJ, Dugger KJ, Vignali DAA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 169:5392–5395

    Article  CAS  PubMed  Google Scholar 

  • Ye Z et al (2002) Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nat Med 8:343–348

    Article  CAS  PubMed  Google Scholar 

  • Yearley JH et al (2017) PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in Cancer. Clin Cancer Res 23:3158–3167

    Article  CAS  PubMed  Google Scholar 

  • Yokosuka T et al (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Publ Group 10:48–57

    CAS  Google Scholar 

  • Zhou Q et al (2011) Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117:4501–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Zinselmeyer BH et al (2013) PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J Exp Med 210:757–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Tamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakajima, M., Tamada, K. (2019). Cancer Immunotherapy Targeting Co-signal Molecules. In: Azuma, M., Yagita, H. (eds) Co-signal Molecules in T Cell Activation. Advances in Experimental Medicine and Biology, vol 1189. Springer, Singapore. https://doi.org/10.1007/978-981-32-9717-3_11

Download citation

Publish with us

Policies and ethics