Skip to main content

Candida albicans Biofilm: Risks, Complications and Preventive Strategies

  • Chapter
  • First Online:
Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry

Abstract

Candida albicans, a dimorphic opportunistic fungal pathogen, can cause a wide range of diseases in humans. Its ability to switch from commensal to pathogenic form is governed by several virulence attributes. The major feature which leads to pathogenicity is its ability to form biofilm. Biofilm formation is a highly regulated multistep process; there are several clinical implications associated with biofilm formation, as sessile cells exhibit high level of resistances against most of the antifungals, and it also protects the cells from harsh hostile environments. The implantable medical devices like catheter support biofilm mode of development by Candida which negatively impacts the health of immunocompromised individuals by causing recurrent infections. This review highlights the mechanism of Candida albicans biofilm formation and its clinical consequences, as well as currently available drugs against biofilm and alternative to drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achkar JM, Fries BC (2010) Candida infections of the genitourinary tract. Clin Microbiol Rev 23(2):253–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Adair CG, Gorman SP, Feron BM et al (1999) Implications of endotracheal tube biofilm ventilator-associated pneumonia. Intensive Care Med 25:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Alem MAS, Oteef MDY, Flowers TH, Douglas LJ (2006) Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell 5(10):1770–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  CAS  PubMed  Google Scholar 

  • Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH et al (2012) Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: A patient-level quantitative review of randomized trials. Clin Infect Dis 54(8):1110–1122

    Article  CAS  PubMed  Google Scholar 

  • Calderone RA (2002) Introduction and historical perspectives. In: Calderone RA (ed) Candida and Candidiasis. ASM Press, Washington, DC, pp 3–13

    Google Scholar 

  • Carratalà J (2002) The antibiotic-lock technique for therapy of ‘highly needed’ infected catheters. Clin Microbiol Infect 8(5):282–289

    Article  PubMed  Google Scholar 

  • Cauda R (2009) Candidaemia in patients with an inserted medical device. Drugs 69(Suppl 1):33–38

    Article  PubMed  Google Scholar 

  • Chander J (2009) Textbook of medical mycology, 2nd edn. Mehta Publisher, New Delhi

    Google Scholar 

  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183(18):5385–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Garcia A, Bucioa E, Brackmanc G, Coenyec T, Concheirob A, Alvarez-Lorenzob C (2011) Biofilm inhibition and drug-eluting properties of novel DMAEMA-modified polyethylene and silicone rubber surfaces. Biofouling 27(2):123–135

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Crump JA, Collignon PJ (2000) Intravascular catheter-associated infections. Eur J Clin Microbiol Infect Dis 19:1–8

    Article  CAS  PubMed  Google Scholar 

  • Dahham SS, Ali MN, Tabassum H, khan M (2010) Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). Am Eurasian J Agric Environ Sci 9(3):273–281

    Google Scholar 

  • Darouiche RO (2001) Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33:1567–1572

    Article  CAS  PubMed  Google Scholar 

  • de Groot PWJ, Bader O, de Boer AD, Weig M, Chauhan N (2013) Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell 12:470–481. https://doi.org/10.1128/EC.00364-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11(1):30–36

    Article  CAS  PubMed  Google Scholar 

  • Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8(4):e1002585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9(2):109–118

    Article  CAS  PubMed  Google Scholar 

  • Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  • Goldmann DA, Pier GB (1993) Pathogenesis of infections related to intravascular catheterization. Clin Microbiol Rev 6:176–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62(3):915–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54(5):1212–1223

    Article  CAS  PubMed  Google Scholar 

  • Jackson BE, Wilhelmus KR, Mitchell BM (2007) Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection. Microb Pathog 42(2–3):88–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson AJ, Flessner RM, Gellman SH, Lynn DM, Palecek SP (2010) Polyelectrolytemultilayers fabricated from antifungal β-peptides: design of surfaces that exhibit antifungal activity against Candida albicans. Biomacromolecules 11(9):2321–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojic EM, Darouiche RO (2004) Candida infections of medical devices. Clin Microbiol Rev 17(2):255–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Maki DG, Tambyah PA (2001) Engineering out the risk of infection with urinary catheters. Emerg Infect Dis 7:1–6

    Article  Google Scholar 

  • Mermel LA, Farr BM, Sherertz RJ, Raad II, O’Grady N, Harris JS, Craven DE (2001) Guidelines for the management of intravascular catheter-related infections. Infect Control Hosp Epidemiol 22:222–242

    Article  CAS  PubMed  Google Scholar 

  • Naglik JR, Moyes DL, Wachtler B, Hube B (2011) Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect 13(12–13):963–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT et al (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2:e63. https://doi.org/10.1371/journal.ppat.0020063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS et al (2009) Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 7:e1000133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM et al (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SJ, Han KH, Park JY, Choi SJ, Lee KH (2014) Influence of bacterial presence on biofilm formation of Candida albicans. Yonsei Med J 55(2):449–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Lopez-Ribot JL (2005) Techniques for antifungal susceptibility testing of Candida albicans biofilms. Methods Mol Med 118:71–79

    CAS  PubMed  Google Scholar 

  • Ramage G, VandeWalle K, Lopez-Ribot JL, Wickes BL (2002) The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 214:95–100

    Article  CAS  PubMed  Google Scholar 

  • Redding S, Bhatt B, Rawls HR, Siegel G, Scott K, Lopez-Ribot J (2009) Inhibition of Candida albicans biofilm formation on denture material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(5):669–672

    Article  PubMed  Google Scholar 

  • Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA (2010) Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryot Cell 9(7):1075–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer A, Rupp S, Taylor BN, Rollinghoff M, Schroppel K (2000) The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol Microbiol 38:435–445

    Article  CAS  PubMed  Google Scholar 

  • Seddiki SM, Boucherit-Otmani Z, Boucherit K, Badsi-Amir S, Taleb M, Kunkel D (2013) Assessment of the types of catheter infectivity caused by Candida species and their biofilm formation: first study in an intensive care unit in Algeria. Int J Gen Med 6:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Soliman S, Alnajdy D, El-Keblawy AA, Mosa KA, Khoder G, Noreddin AM (2017) Plants’ natural products as alternative promising anti-Candida drugs. Pharmacogn Rev 11(22):104–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teughels W, Van Assche N, Sliepen I, Quirynen M (2006) Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 17(Suppl 2):68–81

    Article  PubMed  Google Scholar 

  • Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR et al (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6(3):e1000828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valle J, Da Re S, Henry M, Fontaine T, Balestrino D, Latour-Lambert P et al (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci U S A 103(33):12558–12563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15. https://doi.org/10.1111/j.1365-2958.2006.05072.x

    Article  CAS  PubMed  Google Scholar 

  • Wu TG, Mitchell BM, Carothers TS et al (2003) Molecular analysis of the pediatric ocular surface for fungi. Curr Eye Res 26(1):33–36

    Article  PubMed  Google Scholar 

  • Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J et al (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5:e1333–e1314. https://doi.org/10.1128/mBio.01333-14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the University Grant Commission, Government of India, for awarding Junior and Senior Research Fellowship.

Conflict of Interest

The author has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prerna Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, P. (2019). Candida albicans Biofilm: Risks, Complications and Preventive Strategies. In: Bramhachari, P. (eds) Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry . Springer, Singapore. https://doi.org/10.1007/978-981-32-9409-7_9

Download citation

Publish with us

Policies and ethics