Skip to main content

Quorum Sensing and Biofilm Formation by Oral Pathogenic Microbes in the Dental Plaques: Implication for Health and Disease

  • Chapter
  • First Online:
Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry

Abstract

Periodontal disease is caused by bacteria in dental plaque, the sticky substance that forms on our teeth. Dental plaque has the properties of a biofilm which is comprised of several hundred different bacterial species. Bacteria in biofilms communicate through signalling molecules and use this “quorum sensing” system to optimize their virulence factors and survival. These bacteria respond differently to antibiotics and antimicrobials and more often show drug resistance. Microbial gene expression was found to alter markedly in biofilms. The cells of our immune system release substances to get rid of the bacteria that cause inflammation and damage to the gums, periodontal ligament or alveolar bone. This leads to swollen, bleeding gums, a sign of gingivitis which is the earliest stage of periodontal disease. Such damage from periodontal disease can also cause teeth to become loose apart from leading to other oral infections. Periodontal disease is a widespread and serious health problem in adult population worldwide. To treat such diseases, the expenditure is too high. Furthermore, periodontal disease was found to be linked to other systemic illnesses, such as heart disease and preterm births. The need of the hour is to understand the disease process so that we may be able to control periodontal disease and improve the health status of the adult population worldwide. It has been well established that periodontal disease can be caused by shifts in the microbial population of the dental biofilms. Therefore, understanding the molecular details of quorum sensing mechanisms and disrupting such processes may open a new avenue for controlling bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arweiler NB, Hellwig E, Sculean A, Hein N, Auschill TM (2004) Individual vitality pattern of in situ dental biofilms at different locations in the oral cavity. Caries Res 38:442–447

    Article  CAS  PubMed  Google Scholar 

  • Auschill TM, Hellwig E, Sculean A, Hein N, Arweiler NB (2004) Impact of the intraoral location on the rate of biofilm growth. Clin Oral Investig 8:97–101

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9(4):773–786

    Article  CAS  PubMed  Google Scholar 

  • Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, Pignatelli M, Mira A (2012) The oral metagenome in health and disease. ISME J 6(1):46

    Article  CAS  PubMed  Google Scholar 

  • Berger D, Rakhamimova A, Pollack A, Loewy Z (2018) Oral biofilms: development, control, and analysis. High-throughput 7(3):24

    CAS  PubMed Central  Google Scholar 

  • Bhagwat SP, Nary J, Burne RA (2001) Effects of mutating putative two-component systems on bioflm formation by Streptococcus mutans UA159. FEMS Microbiol Lett 205:225–230

    Article  CAS  PubMed  Google Scholar 

  • Burgess NA, Kirke DF, Williams P, Winzer K, Hardie KR, Meyers NL et al (2002) LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology 148(Pt 3):763–772

    Article  CAS  PubMed  Google Scholar 

  • Carpentier B (1999) Les biofilms (2). Bull Soc Fr Microbiol 14:105e11

    Google Scholar 

  • Chesson P (2000) General theory of competitive coexistence in spatially varying environments. Theor Popul Biol 58:211–237

    Article  CAS  PubMed  Google Scholar 

  • Chifiriuc MC, Ditu LM, Oprea E, Litescu S, Bucur M, Marutescu L et al (2009) In vitro study of the inhibitory activity of usnic acid on dental plaque biofilm. Roum Arch Microbiol Immunol 68(4):215–222

    CAS  PubMed  Google Scholar 

  • Chung WO, Park Y, Lamont RJ, McNab R, Barbieri B, Demuth DR (2001) Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol 183:3903–3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton JW (2007) Biofilms: the bacterial way to persist, abstracts book of the international symposium and the 43rd ESCMID post-graduate course- bacterial adaptation mechanisms: biofilms, hypermutability and antibiotic resistance. Springer, Singapore p 9

    Google Scholar 

  • Costerton JW, Steward PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318e22

    Article  Google Scholar 

  • Costerton JW, Montanaro L, Arciola CR (2007) Bacterial communication in implants infections: a target for an intelligence war. Int J Artif Organs 30:757e63

    Article  Google Scholar 

  • Cvitkovitch DG (2001) Genetic competence and transformation in oral streptococci. Crit Rev Oral Biol Med 12:217–243

    Article  CAS  PubMed  Google Scholar 

  • Czajkowski R, Jafra S (2009) Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim Pol 56:1e16

    Article  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg PD (2006) Furanones. In antifouling compounds. Springer, Berlin/Heidelberg, pp 55–86

    Book  Google Scholar 

  • Deng ZL, Sztajer H, Jarek M, Bhuju S, Wagner-Döbler I (2018) Worlds apart–transcriptome profiles of key oral microbes in the periodontal pocket compared to single laboratory culture reflect synergistic interactions. Front Microbiol 9:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411(6839):813

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum quenching N-Acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754e9

    Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dye BA, Thornton-Evans G, Li X, Iafolla TJ (2015) Caries and tooth loss in adults in the United States, 2011–2012; Data Brief No. 197. National Center for Health Statistics, Hyattsville

    Google Scholar 

  • Filoche SK, Anderson SA, Sissons CH (2004) Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans. Oral Microbiol Immunol 19:322–326

    Article  CAS  PubMed  Google Scholar 

  • Fong KP, Chung WO, Lamont RJ, Demuth DR (2001) Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect Immun 69:7625–7634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong KP, Gao L, Demuth DR (2003) luxS and arcB control aerobic growth of Actinobacillus actinomycetemcomitans under iron limitation. Infect Immun 71:298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francolini P, Norris P, Piozzi A, Donelli G, Stoodley P (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48(11):4360e5

    Article  CAS  Google Scholar 

  • Frias J, Olle E, Alsina M (2001) Periodontal pathogens produce quorum sensing signal molecules. Infect Immun 69:3431–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghione M, Parrello D, Grasso L (1988) Usnic acid revisited, its activity on oral flora. Chemioterapia 7(5):302–305

    CAS  PubMed  Google Scholar 

  • Gilbert P, Evans DJ, Brown MRW (1993). Formation and dispersal of bacterial biofilms in vivo and in situ, J Appl Bacteriol (Symp Suppl.). In: Quesnel LB, Gilbert P, Handley Pauline S (eds) Microbial cell envelopes: interactions and biofilms, vol 74. Blackwell Scientific Publications, Oxford, p 67S–78S

    Article  PubMed  Google Scholar 

  • Grasso L, Ghirardi PE, Ghione M (1989) Usnic acid, a selective antimicrobial agent against Streptococcus mutans: a pilot clinical study. Curr Ther Res 10:67–70

    Google Scholar 

  • Håvarstein LS, Gaustad P, Nes IF, Morrison DA (1996) Identification of the streptococcal competence-pheromone receptor. Mol Microbiol 21:863–869

    Article  PubMed  Google Scholar 

  • Håvarstein LS, Hakenbeck R, Gaustad P (1997) Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 179:6589–6594

    Article  PubMed  PubMed Central  Google Scholar 

  • Henke JM, Bassler BL (2004) QS regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol 186:3794–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112:1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob M (2006) Biofilms, a new approach to the microbiology of dental plaque. Odontology 94(1):1–9

    Article  Google Scholar 

  • Jayaraman A, Wood TH (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10:145–167

    Article  CAS  PubMed  Google Scholar 

  • Johnson MR et al (2005) Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 55:664–674

    Article  CAS  PubMed  Google Scholar 

  • Kiran GS, Hassan S, Sajayan A, Selvin J (2017) Quorum quenching compounds from natural sources. In bioresources and bioprocess in biotechnology. Springer, Singapore, pp 351–364

    Book  Google Scholar 

  • Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr (2002) Communication among oral bacteria. Microbiol Mol Biol Rev 66:486–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazazzera BA, Grossman AD (1998) The ins and outs of peptide signaling. Trends Microbiol 6(7):288–294

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2001a) Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Hanna MN, Svensäter G, Ellen RP, Cvitkovitch DG (2001b) Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183:6875–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP et al (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD et al (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One 7(6):e37919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llamas I, Keshavan N, Gonzalez JE (2004) Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones. Appl Environ Microbiol 70:3715–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loo CY, Corliss DA, Ganeshkumar N (2000) Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182:1374–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manefield M, de Nys R, Naresh K, Roger R, Givskov M, Peter S, Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145(2):283–291

    Article  CAS  PubMed  Google Scholar 

  • Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271

    Article  CAS  PubMed  Google Scholar 

  • Marsh PD (2003) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271

    Article  Google Scholar 

  • McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merritt J, Qi F, Goodman SD, Anderson MH, Shi W (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Ann Rev Microbiol 55(1):165–199

    Article  CAS  Google Scholar 

  • Morse DJ, Wilson MJ, Wei X, Lewis MAO, Bradshaw DJ, Murdoch C, Williams DW (2018) Denture-associated biofilm infection in three-dimensional Oral mucosal tissue models. J Med Microbiol 67:364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazzaro F, Fratianni F, Coppola R (2013) Quorum sensing and phyto-chemicals. Int J Mol Sci 56:12607–12619

    Article  CAS  Google Scholar 

  • Neppelenbroek KH (2015) The importance of daily removal of the denture biofilm for oral and systemic diseases prevention. J Appl Oral Sci 23:547–548

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyvad BE, Kilian MO (1987) Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95(5):369–380

    CAS  PubMed  Google Scholar 

  • Paggi RA, Martone CB, Fuqua C, de Castro RE (2003) Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS Microbiol Lett 221:49–52

    Article  CAS  PubMed  Google Scholar 

  • Petersen FC, Scheie AA (1998) Chemical plaque control: a comparison of oral health care products. In: Busscher HJ, Evans LV (eds) Oral biofilms and plaque control. Harwood Academic Publisher, Amsterdam, pp 277–293

    Google Scholar 

  • Petersen FC, Scheie AA (2000) Genetic transformation in Streptococcus mutans requires a peptide secretion-like apparatus. Oral Microbiol Immunol 15:329–334

    Article  CAS  PubMed  Google Scholar 

  • Preshaw PM, Walls AWG, Jakubovics NS, Moynihan PJ, Jepson NJA, Loewy Z (2011) Association of removable partial denture use with oral and systemic health. J Dent 39:711–719

    Article  CAS  PubMed  Google Scholar 

  • Rivas M, Seeger M, Jedlicki E, Holmes DS (2007) Second acylhomoserine lactone-producing system in the extreme acidophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 73:3225–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217

    Article  CAS  PubMed  Google Scholar 

  • Schaumann S, Staufenbiel I, Scherer R, Schilhabel M, Winkel A, Stumpp SN, Eberhard J, Stiesch M (2014) Pyrosequencing of supra- and subgingival biofilms from inflamed peri-implant and periodontal sites. BMC Oral Health 14:1–157

    Article  Google Scholar 

  • Scheie AA (2003) The role of antimicrobials. In: Fejerskov O, Kidd E (eds) Dental caries. The disease and its clinical management. Blackwell Munksgaard, Oxford, pp 179–189

    Google Scholar 

  • Socransky S (2002) Dental biofilms: difficult therapeutic targets. Periodontol 2000(28):12–15

    Article  Google Scholar 

  • Suga H, Smith KM (2003) Molecular mechanisms of bacterial quorum sensing as a new drug target. Curr Op Chem Biol 7:586–591

    Article  CAS  Google Scholar 

  • Susewind S, Lang R, Hahnel S (2015) Biofilm formation and Candida albicans morphology on the surface of denture base materials. Mycoses 58:719–727

    Article  CAS  PubMed  Google Scholar 

  • Szafrański SP, Deng ZL, Tomasch J, Jarek M, Bhuju S, Rohde M et al (2017) Quorum sensing of Streptococcus mutans is activated by Aggregatibacter actinomycetemcomitans and by the periodontal microbiome. BMC Genomics 18(1):238

    Google Scholar 

  • Tang K, Zhang XH (2014) Quorum quenching agents: resources for antivirulence therapy. Mar Drugs 12(6):3245–3282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upton M, Tagg JR, Wescombe P, Jenkinson HF (2001) Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 183:3931–3938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen ZT, Burne RA (2002) Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol 68:1196–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whatmore AM, Barcus VA, Downson CG (1999) Genetic diversity of the streptococcal competence (com) gene locus. J Bacteriol 75:3144–3154

    Google Scholar 

  • Wu C, Savitt E (2002) Evaluation of the safety and efficacy of over the-counter oral hygiene products for the reduction and control of dental plaque and gingivitis. Periodontol 28:91–105

    Article  Google Scholar 

  • Yang F, Wang LH, Wang J, Dong YH, Yong H, Jiang Z (2005) Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 579:3713e7

    Google Scholar 

  • Yoshida A, Kuramitsu HK (2002) Multiple Streptococcus mutans genes are involved in biofilm formation. Appl Environ Microbiol 68:6283–6291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yother J, Trieu-Cuot P, Klaenhammer TR, De Vos WM (2002) Genetics of streptococci, lactococci, and enterococci: review of the sixth international conference. J Bacteriol 184:6085–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saqib Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bramhachari, P.V., Ahmed, V.K.S., Selvin, J., Hassan, S. (2019). Quorum Sensing and Biofilm Formation by Oral Pathogenic Microbes in the Dental Plaques: Implication for Health and Disease. In: Bramhachari, P. (eds) Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry . Springer, Singapore. https://doi.org/10.1007/978-981-32-9409-7_10

Download citation

Publish with us

Policies and ethics