Skip to main content

Research Progress of the Grassland Carbon Cycle and Grassland Degradation in China

  • Chapter
  • First Online:
Remote Sensing Monitoring and Evaluation of Degraded Grassland in China

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

Grasslands, one of the most common vegetation types in the world, account for nearly 20% of the global land surface. The vast land cover and carbon sequestration potential make it become the important composition of the terrestrial carbon cycle. In China, grasslands mainly locate in the arid and semi-arid areas in the northwest and the Tibetan Plateau alpine climate regions, which make it sensitive and vulnerable to climate change and frequent human intervention. Along with the global warming and population explosion, substantial land-use and cover change has occurred in China due to overgrazing, grassland reclamation, and over-mining explorations. All these changes had led to serious ecological problems, such as grassland degradation, desertification, and future changes of the global carbon cycle. In recent decades, Chinese government has initiated several ecosystem restoration programs to mitigate the environment degradation. Meanwhile, along with the development of remote sensing technology, grassland carbon sequestration can be simulated by ecological remote sensing model in large scale, and previous studies showed that grassland of China is carbon sink. Grazing is one of the main ways of grassland resource utilization and is also the main factor of grassland degradation. About 35% of the degraded grasslands in the world are caused by overgrazing, which accounts for more than 20% in China. However, the spatial–temporal dynamic of carbon sink or source of grassland of China, and the driving mechanism of grassland degradation in China need deep analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama T, Kawamura K (2007) Grassland degradation in China: methods of monitoring, management and restoration. Grassland Sci 53(1):1–17

    Article  Google Scholar 

  • Alfredo CD, Emilio CW, Ana C (2002) Satellite remote sensing analysis to monitor desertification processes in the crop-rangeland boundary of Argentina. J Arid Environ 52(1):121–133

    Article  Google Scholar 

  • Asner GP, Martin RE (2004) Biogeochemistry of desertification and woody encroachment in grazing systems. Ecosyst land use change 99–116

    Google Scholar 

  • Asrar G, Weiser RL, Johnson DE, Kanemasu ET, Killeen JM (1986) Distinguishing among tallgrass prairie cover types from measurements of multispectral reflectance. Remote Sens Environ 19(2):159–169

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteor Soc 82(11):2415–2434

    Article  Google Scholar 

  • Bao YS (2003) The history and future of grassland animal husbandry in Inner Mongolia. Inner Mongolia Education Press, Hohhot

    Google Scholar 

  • Burkart S, Manderscheid R, Weigel H (2007) Design and performance of a portable gas exchange chamber system for CO2 and H2O flux measurements in crop canopies. Environ Exp Bot 61(1):25–34

    Article  Google Scholar 

  • Chen ZZ (1990) Degradation and regulation of natural grassland ecosystem in China. Study on land degradation control in China. China Science and Technology Press, Beijing, pp 86–88

    Google Scholar 

  • Chen WJ, Chen J, Cihlar J (2000) An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry. Ecol Model 135(1):55–79

    Article  Google Scholar 

  • Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11(2):343–355

    Article  Google Scholar 

  • DeFries RS, Field CB, Fung I, Collatz GJ, Bounoua L (1999) Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob Biogeochem Cycles 13(3):803–815

    Article  Google Scholar 

  • Fan JW, Zhong HP, Chen LB, Zhang WY (2007) Some scientific problems of grassland degradation in arid and semi-arid regions in northern China. Chin J Grassland 29(5):95–101

    Google Scholar 

  • Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51(1):74–88

    Article  Google Scholar 

  • Han JG, Zhang YJ, Wang CJ, Bai WM, Wang YR, Han GD (2008) Rangeland degradation and restoration management in China. Rangeland J 30(2):233–239

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ, Dai X (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Huang WX (1991) Development of animal husbandry resources and base construction in Southwest China: Beijing. Science Press

    Google Scholar 

  • Imhoff ML, Bounoua L, DeFries R, Lawrence WT, Stutzer D, Tucker CJ (2004) The consequences of urban land transformation on net primary productivity in the United States. Remote Sens Environ 89(4):434–443

    Article  Google Scholar 

  • Jia HT (2007) Ecological effects of enclosure on degraded grassland in Xinjiang. Xinjiang Agricultural University

    Google Scholar 

  • Kaduk J, Heimann M (1996) A prognostic phenology scheme for global terrestrial carbon cycle models. Climate Res 6(1):1–19

    Article  Google Scholar 

  • Kergoat L (1998) A model for hydrological equilibrium of leaf area index on a global scale. J Hydrol 212:268–286

    Article  Google Scholar 

  • Klein JA, Harte J, Zhao XQ (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7(12):1170–1179

    Article  Google Scholar 

  • Klein JA, Harte J, Zhao X (2007) Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol Appl 17(2):541–557

    Article  Google Scholar 

  • Knorr W, Heimann M (1995) Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus B 47(4):471–489

    Article  Google Scholar 

  • Lal R (2002) Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems. Land Degrad Dev 13(6):469–478

    Article  Google Scholar 

  • Levy PE, Cannell M, Friend AD (2004) Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Glob Environ Change 14(1):21–30

    Article  Google Scholar 

  • Li B (1990) Study on natural resources and environment of Ordos Plateau in Inner Mongolia. Science Press, Beijing

    Google Scholar 

  • Li B (1997) The degradation of grassland in North China and its countermeasure. Agr Sci Sin 30:1–10

    Google Scholar 

  • Li XL, Yuan QH, Wan LQ, He F (2008) Perspectives on livestock production systems in China. Rangeland J 30(2):211–220

    Article  Google Scholar 

  • Lieth H, Box E (1972) Evapotranspiration and primary productivity. Publ Climatol 25(2):37–46

    Google Scholar 

  • Liu SL, Wang T (2007) Aeolian desertification from the mid-1970s to 2005 in Otindag Sandy Land, Northern China. Environ Geol 51(6):1057–1064

    Article  Google Scholar 

  • Liu ZL, Wang W, Hao DY, Liang CZ (2002) Prebes on the degeneration and recovery succession mechanisms of Inner Mongolia Steppe. J Arid Resour Environ 16(1):84–91

    Google Scholar 

  • Liu Y, Zha Y, Gao J, Ni S (2004) Assessment of grassland degradation near Lake Qinghai, West China, using Landsat TM and in situ reflectance spectra data. Int J Remote Sens 25(20):4177–4189

    Article  Google Scholar 

  • Lu D, Batistella M, Mausel P, Moran E (2007) Mapping and monitoring land degradation risks in the Western Brazilian Amazon using multitemporal Landsat TM/ETM + images. Land Degrad Dev 18(1):41–54

    Article  Google Scholar 

  • Matthews E, Payne R, Rohweder M, Murray S (2000) Pilot analysis of global ecosystems: Forest ecosystems. World Resources Institute, Washington DC

    Google Scholar 

  • McGuire AD, Melillo JM, Kicklighter DW, Pan Y, Xiao X, Helfrich J (1997) Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration. Global Biogeochem Cycles 11(2):173–189

    Article  Google Scholar 

  • Meinzen-Dick RS, Di Gregorio M (2004) Collective action and property rights for sustainable development. International Food Policy Research Institute, Washington

    Google Scholar 

  • Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63(4):327–366

    Article  Google Scholar 

  • Millington JDA, Perry GLW, Romero-Calcerrada R (2007) Regression techniques for examining land use/cover change: a case study of a Mediterranean landscape. Ecosystems 10(4):562–578

    Article  Google Scholar 

  • Milton SJ, du Plessis MA, Siegfried WR (1994) A conceptual model of arid rangeland degradation. Bioscience 44(2):70–76

    Article  Google Scholar 

  • National Animal Husbandry Center (2006) Technical specification for monitoring grassland resources and ecology. NY/T 1233–2006

    Google Scholar 

  • Nautiyal MC, Nautiyal BP, Prakash V (2004) Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist 24(2):125–134

    Article  Google Scholar 

  • Ni J (2002) Carbon storage in grasslands of China. J Arid Environ 50(2):205–218

    Article  Google Scholar 

  • Niu JM (2001) Impacts prediction of climatic change on distribution and production of grassland in inner Mongolia. Acta Agrestla Sin 9(4):277–282

    Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob Biogeochem Cycles 7(4):785–809

    Article  Google Scholar 

  • Peng X (1993) Grassland resources and its application of Xinjiang. Xinjiang Science and Technology and Health Press, Ulu

    Google Scholar 

  • Piao SL, Fang JY, Ji W, Guo QH, Ke JH, Tao S (2004) Variation in a satellite-based vegetation index in relation to climate in China. J Veg Sci 15(2):219–226

    Article  Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7(4):811–841

    Article  Google Scholar 

  • Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J Biogeogr 20(4):815–835

    Article  Google Scholar 

  • Qi YC, Dong YS, Geng YB, Yang XH, Geng HL (2003) The progress in the carbon cycle researches in grassland ecosystem in China. Prog Geogr 22(4):342–352

    Google Scholar 

  • Ren H, Shen WJ, Lu HF, Wen XY, Jian SG (2007) Degraded ecosystems in China: status, causes, and restoration efforts. Landscape Ecol Eng 3(1):1–13

    Article  Google Scholar 

  • Ren JZ, Hu ZZ, Zhao J, Zhang DG, Hou FJ, Lin HL (2008) A grassland classification system and its application in China. Rangeland J 30(2):199–209

    Article  Google Scholar 

  • Rodriguez-Murillo JC (2001) Organic carbon content under different types of land use and soil in peninsular Spain. Biol Fertil Soils 33(1):53–61

    Article  Google Scholar 

  • Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophys Res 99(D3):5263–5283

    Article  Google Scholar 

  • Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Scaling physiological processes: leaf to globe, pp 141–158

    Chapter  Google Scholar 

  • Schmid HP (1994) Source areas for scalars and scalar fluxes. Bound-Layer Meteorol 67(3):293–318

    Article  Google Scholar 

  • Scurlock J, Hall DO (1998) The global carbon sink: a grassland perspective. Glob Change Biol 4(2):229–233

    Article  Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor Syst 60(2):123–130

    Article  Google Scholar 

  • Snyman HA, Fouché HJ (1991) Production and water-use efficiency of semi-arid grasslands of South Africa as affected by veld condition and rainfall. Water SA 17(4):263–268

    Google Scholar 

  • Su YZ, Li YL, Zhao HL (2006) Soil properties and their spatial pattern in a degraded sandy grassland under post-grazing restoration, Inner Mongolia, northern China. Biogeochemistry 79(3):297–314

    Article  Google Scholar 

  • Tao B, Ge QS, Li KR, Shao XM (2001) Progress in the studies on carbon cycle in terrestrial ecosystem. Geogr Res 20(5):564–575

    Google Scholar 

  • Turner BL II, Villar SC, Foster D, Geoghegan J, Keys E, Klepeis P (2001) Deforestation in the southern Yucatan peninsular region: an integrative approach. For Ecol Manag 154(3):353–370

    Article  Google Scholar 

  • Uchijima Z, Seino H (1985) Agroclimatic evaluation of net primary productivity of natural vegetations, 1: Chikugo model for evaluating net primary productivity. J Agric Meteorol 40:343–352

    Article  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze E, Rebmann C, Moors EJ (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404(6780):861–865

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277(5325):494–499

    Article  Google Scholar 

  • Wang G, Cheng G, Shen Y (2002) Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication. J Glaciol Geocryol 24(6):693–700

    Google Scholar 

  • Wang XM, Chen FH, Dong ZB (2006) The relative role of climatic and human factors in desertification in semiarid China. Glob Environ Change 16(1):48–57

    Article  Google Scholar 

  • Wang X, Zang S, Na X (2011) Analyzing dynamic process of land use change in Ha-Da-Qi industrial corridor of China. Procedia Environ Sci 11(Part B):1008–1015

    Article  Google Scholar 

  • Wang T, Sun JG, Han H, Yan CZ (2012) The relative role of climate change and human activities in the desertification process in Yulin region of northwest China. Environ Monit Assess 184(12):7165–7173

    Article  Google Scholar 

  • Warnant P, François L, Strivay D, Gérard JC (1994) CARAIB: a global model of terrestrial biological productivity. Global Biogeochem Cycles 8(3):255–270

    Article  Google Scholar 

  • Wu DD, Cai YL (2009) Evaluation of ecological restoration effects in China: A review. Prog Geogr 28(4):622–628

    Google Scholar 

  • Xu ZX, Zhao ML (2000) Eco-environmental deterioration and strategies for preventing it in Inner Mongolia. Grassland China (5):59–63

    Google Scholar 

  • Yu GR, Li HT, Wang SQ (2003) Global change, carbon cycle and storage in terrestrial ecosystem. Meteorological Press, Beijing

    Google Scholar 

  • Zhang WH, Yang W (2011) The feature analysis for grassland degradation and the restoration of natural vegetation in degraded grassland. Northern Environ (8):40–44

    Google Scholar 

  • Zhang W, Zhang H, Ze B (2006) Progress studies on the carbon cycle of Alpine meadow in China. J Mt Sci 24(B10):266–274

    Google Scholar 

  • Zhang CX, Wang XM, Li JC, Hua T (2011) Roles of climate changes and human interventions in land degradation: a case study by net primary productivity analysis in China’s Shiyanghe Basin. Environ Earth Sci 64(8):2183–2193

    Article  Google Scholar 

  • Zheng YR, Xie ZX, Robert C, Jiang LH, Shimizu H (2006) Did climate drive ecosystem change and induce desertification in Otindag sandy land, China over the past 40 years. J Arid Environ 64(3):523–541

    Article  Google Scholar 

  • Zhou CY, Zhang DQ, Wang SY, Zhou GY, Liu SZ, Tang XL (2004) Diurnal variations of fluxes of the greenhouse gases from a coniferous and broad-leaved mixed forest soil in Dinghushan. Acta Ecol Sin 24(8):1738–1741

    Google Scholar 

  • Zhu ZD (1997) Global change and desertification. Earth Sci Front 4(1):213–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, W., Li, J., Yue, T. (2020). Research Progress of the Grassland Carbon Cycle and Grassland Degradation in China. In: Remote Sensing Monitoring and Evaluation of Degraded Grassland in China. Springer Geography. Springer, Singapore. https://doi.org/10.1007/978-981-32-9382-3_1

Download citation

Publish with us

Policies and ethics