Skip to main content

Revisiting Zinc-Side Electrochemistry

  • Chapter
  • First Online:
The Zinc/Bromine Flow Battery

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 1558 Accesses

Abstract

On the basis of a reasonable understanding of Zn/Br redox flow battery systems obtained from the previous chapter, it is possible to formulate a sound strategy to carry out in-depth studies of each Zn/Br half-cell (i.e. the zinc and bromine sides). The knowledge obtained from such investigations would in turn enable researchers to test and identify methods of individually optimizing each half-cell to achieve significantly better overall performance. This chapter presents a deeper understanding of zinc-side electrochemical processes occurring in the Zn/Br during charge/discharge cycling, collating and reviewing relevant literature pertaining to this area from the field of flow batteries and others, such as studies on industrial electroplating. The problems faced by earlier generations of Zn/Br systems due to the utilization of metallic electrodes are highlighted, followed by a description of the attractiveness and viability of employing carbon-based electrode stacks instead. Finally, a detailed look is taken at zinc-side redox mechanisms and the kinetics of related reactions, leading into methods of catalytically enhancing electrode performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Putt RA (1979) Assessment of technical and economic feasibility of zinc/bromine batteries for utility load leveling. Palo Alto, California

    Google Scholar 

  2. Ebtehaj K, Hardie D, Parkins RN (1985) The stress corrosion and pre-exposure embrittlement of titanium in methanolic solutions of hydrochloric acid. Corros Sci 25:415–429. doi:10.1016/0010-938X(85)90039-3

    Article  Google Scholar 

  3. Sudhaker Nayak HV, Vasu KI, Prasad YVRK (1980) Texture dependent stress corrosion failure of commercial titanium sheets in bromine-methanol solution. J Mater Sci 15:1265–1275. doi:10.1007/BF00551816

    Article  Google Scholar 

  4. Khan IH (1975) The surface structure of titanium and its interaction with bromine and chlorine. Surf Sci 48:537–548. doi:10.1016/0039-6028(75)90425-2

    Article  Google Scholar 

  5. Cathro KJ (1986) Zinc-bromine batteries for energy storage applications: End of grant report. Department of Resources and Energy, vol 541. Canberra, Australia

    Google Scholar 

  6. Chakrabarti MH, Brandon NP, Hajimolana SA et al (2014) Application of carbon materials in redox flow batteries. J Power Sources 253:150–166. doi:10.1016/j.jpowsour.2013.12.038

    Article  Google Scholar 

  7. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27. doi:10.1016/j.jpowsour.2006.02.065

    Article  Google Scholar 

  8. Nikiforidis G, Daoud WA (2015) Thermally modified graphite electrodes for the positive side of the zinc-cerium redox flow battery. J Electrochem Soc 162:A809–A819. doi:10.1149/2.0041506jes

    Article  Google Scholar 

  9. Cedzynska K (1995) Properties of modified electrolyte for zinc-bromine cells. Electrochim Acta 40:971–976. doi:10.1016/0013-4686(94)00372-8

    Article  Google Scholar 

  10. Cedzynska K (1989) Some properties of zinc-bromine cell electrolytes containing symmetrical ammonium bromides. Electrochim Acta 34:1439–1442. doi:10.1016/0013-4686(89)87185-3

    Article  Google Scholar 

  11. Cathro KJ, Cedzynska K, Constable DC (1987) Preparation and performance of plastic-bonded-carbon bromine electrodes. J Power Sources 19:337–356. doi:10.1016/0378-7753(87)87009-X

    Article  Google Scholar 

  12. Cathro KJ, Cedzynska K, Constable DC (1985) Some properties of zinc/bromine battery electrolytes. J Power Sources 16:53–63. doi:10.1016/0378-7753(85)80003-3

    Article  Google Scholar 

  13. RedFlow Ltd. (2013) RedFlow Limited—Energy Storage Solutions. http://www.redflow.com

  14. Ltd RedFlow (2013) RedFlow white paper: field application experience of zinc-bromide flow batteries in a smart grid. Brisbane, Queensland, Australia

    Google Scholar 

  15. Rose DM, Ferreira SR (2013) Performance testing of zinc-bromine flow batteries for remote telecom sites. The BattconTM 2013 stationary battery conference and trade show. pp 1–11

    Google Scholar 

  16. Rose DM, Ferreira SR (2012) Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1. Albuquerque, Livermore

    Google Scholar 

  17. Kintner-Meyer MCW, Jin C (2013) Demonstrations of modular energy storage in the Northwest with considerations of resilience improvements of power supply. Proceedings of the 2013 electrical energy storage applications & technologies (EESAT) biennial international conference

    Google Scholar 

  18. Jorné J, Kim JT, Kralik D (1979) The zinc-chlorine battery: half-cell overpotential measurements. J Appl Electrochem 9:573–579. doi:10.1007/BF00610944

    Article  Google Scholar 

  19. Sitnikova TG, Sitnikov AS (2005) The effect of organic additives on the kinetics of zinc electroplating. Prot Met 41:607–609. doi:10.1007/s11124-005-0089-x

    Article  Google Scholar 

  20. Donepudi VS (1984) Electrochemical calorimetry of the zinc and bromine electrodes in zinc-bromine and zinc-air batteries. J Electrochem Soc 131:1477–1485. doi:10.1149/1.2115877

    Article  Google Scholar 

  21. Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93:1157–1204. doi:10.1021/cr00019a014

    Article  Google Scholar 

  22. Asthagiri D, Pratt LR, Paulaitis ME, Rempe SB (2004) Hydration structure and free energy of biomolecularly specific aqueous dications, including Zn2 + and first transition row metals. J Am Chem Soc 126:1285–9. doi: 10.1021/ja0382967

    Google Scholar 

  23. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  24. Kresse G (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. doi:10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B: Condens Matter 54:11169–11186

    Article  Google Scholar 

  26. Vasilakopoulos D, Bouroushian M, Spyrellis N (2009) Electrocrystallisation of zinc from acidic sulphate baths; A nucleation and crystal growth process. Electrochim Acta 54:2509–2514. doi:10.1016/j.electacta.2008.11.059

    Article  Google Scholar 

  27. Fashu S, Gu CD, Zhang JL et al (2014) Electrodeposition, morphology, composition, and corrosion performance of Zn-Mn coatings from a deep eutectic solvent. J Mater Eng Perform 24:434–444. doi:10.1007/s11665-014-1248-5

    Article  Google Scholar 

  28. Nikiforidis G, Berlouis L, Hall D, Hodgson D (2013) A study of different carbon composite materials for the negative half-cell reaction of the zinc cerium hybrid redox flow cell. Electrochim Acta 113:412–423. doi:10.1016/j.electacta.2013.09.061

    Article  Google Scholar 

  29. Nikiforidis G, Berlouis L, Hall D, Hodgson D (2013) Impact of electrolyte composition on the performance of the zinc–cerium redox flow battery system. J Power Sources 243:691–698. doi:10.1016/j.jpowsour.2013.06.045

    Article  Google Scholar 

  30. Nikiforidis G, Daoud WA (2015) Indium modified graphite electrodes on highly zinc containing methanesulfonate electrolyte for zinc-cerium redox flow battery. Electrochim Acta 168:394–402. doi:10.1016/j.electacta.2015.03.118

    Article  Google Scholar 

  31. Leung PK, Ponce-de-León C, Low CTJ, Walsh FC (2011) Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery. Electrochim Acta 56:6536–6546. doi:10.1016/j.electacta.2011.04.111

    Article  Google Scholar 

  32. Chakrabarti MH, Mjalli FS, AlNashef IM et al (2014) Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries. Renew Sustain Energy Rev 30:254–270. doi:10.1016/j.rser.2013.10.004

    Article  Google Scholar 

  33. Xu M, Ivey DG, Xie Z, Qu W (2013) Electrochemical behavior of Zn/Zn(II) couples in aprotic ionic liquids based on pyrrolidinium and imidazolium cations and bis(trifluoromethanesulfonyl)imide and dicyanamide anions. Electrochim Acta 89:756–762. doi:10.1016/j.electacta.2012.11.023

    Article  Google Scholar 

  34. Whitehead AH, Pölzler M, Gollas B (2010) Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycol. J Electrochem Soc 157:D328. doi:10.1149/1.3364930

    Article  Google Scholar 

  35. Anderson TM, Pratt III HD, Leonard JC (2013) Tailorable Ionic materials for higher energy density redox flow batteries. Proceedings of the 2013 electrical energy storage applications & technologies (EESAT) biennial international conference

    Google Scholar 

  36. Chandrasekar MS, Srinivasan S, Pushpavanam M (2008) Properties of zinc alloy electrodeposits produced from acid and alkaline electrolytes. J Solid State Electrochem 13:781–789. doi: 10.1007/s10008-008-0607-2

    Google Scholar 

  37. Barceló G, Sarret M, Müller C, Pregonas J (1998) Corrosion resistance and mechanical properties of zinc electrocoatings. Electrochim Acta 43:13–20. doi:10.1016/S0013-4686(97)00229-6

    Article  Google Scholar 

  38. Ganne F, Cachet C, Maurin G et al (2000) Impedance spectroscopy and modelling of zinc deposition in chloride electrolyte containing a commercial additive. J Appl Electrochem 30:665–673. doi:10.1023/A:1004096822969

    Article  Google Scholar 

  39. Baker BC (1997) Electrochemical impedance spectroscopy study of nickel-iron deposition. J Electrochem Soc 144:169. doi:10.1149/1.1837380

    Article  Google Scholar 

  40. Devos O, Aaboubi O, Chopart JP et al (1999) EIS investigation of zinc electrodeposition in basic media at low mass transfer rates induced by a magnetic field. J Phys Chem B 103:496–501. doi:10.1021/jp9835263

    Article  Google Scholar 

  41. Meille V (2006) Review on methods to deposit catalysts on structured surfaces. Appl Catal A 315:1–17. doi:10.1016/j.apcata.2006.08.031

    Article  Google Scholar 

  42. Friedrich JM, Ponce-de-León C, Reade GW, Walsh FC (2004) Reticulated vitreous carbon as an electrode material. J Electroanal Chem 561:203–217. doi:10.1016/j.jelechem.2003.07.019

    Article  Google Scholar 

  43. Gao T, Sun S-L, Shi L-L et al (2009) An accurate density functional theory calculation for electronic excitation energies: the least-squares support vector machine. J Chem Phys 130:184104. doi:10.1063/1.3126773

    Article  Google Scholar 

  44. Gao Z, Bandosz TJ, Zhao Z et al (2009) Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J Hazard Mater 167:357–365. doi:10.1016/j.jhazmat.2009.01.050

    Article  Google Scholar 

  45. Sun X, Souier T, Chiesa M, Vassallo A (2014) Effect of surface transport properties on the performance of carbon plastic electrodes for flow battery applications. Electrochim Acta 148:104–110. doi:10.1016/j.electacta.2014.10.003

    Article  Google Scholar 

  46. Wang WH, Wang XD (2007) Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochim Acta 52:6755–6762. doi:10.1016/j.electacta.2007.04.121

    Article  Google Scholar 

  47. Brooks AC, Basore K, Bernhard S (2013) Photon-driven reduction of Zn2 + to Zn metal. Inorg chem 52:5794–800. doi: 10.1021/ic302629q

    Google Scholar 

  48. Xu RD, Huang LP, Zhou JF et al (2012) Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb-PANI-WC composite inert anodes used in zinc electrowinning. Hydrometallurgy 125–126:8–15. doi:10.1016/j.hydromet.2012.04.012

    Article  Google Scholar 

  49. Zhan P, Xu R, Huang L et al (2012) Effects of polyaniline on electrochemical properties of composite inert anodes used in zinc electrowinning. Trans Nonferrous Metals Soc China 22:1693–1700. doi:10.1016/S1003-6326(11)61375-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinath Pillai Rajarathnam .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rajarathnam, G.P., Vassallo, A.M. (2016). Revisiting Zinc-Side Electrochemistry. In: The Zinc/Bromine Flow Battery. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-287-646-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-646-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-645-4

  • Online ISBN: 978-981-287-646-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics