Skip to main content

Nanoparticle-Enabled Optical Endoscopy: Extending the Frontiers of Diagnosis and Treatment

  • Chapter
  • First Online:
Frontiers in Biophotonics for Translational Medicine

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 3))

Abstract

Endoscopy—looking deep inside the body with light—is an important part of standard medical practice, for disease detection/localization and staging and to guide treatments and monitor responses. This is especially the case in oncology applications, which is the primary focus of this chapter. However, established endoscopy techniques are unable to meet all the clinical needs and in particular fail to exploit the rich information provided by advances in molecular biology, including genomics and proteomics. Incorporating the use of nanoparticles into endoscopic technologies and procedures can significantly extend their capabilities and hence potential clinical impact. This chapter describes the endoscopic techniques that are currently in use, as well as emerging approaches using different light-tissue interactions, and how incorporating nanoparticles can enhance their information content and hence clinical sensitivity and specificity. Specific examples of current research in this field are presented in more detail to demonstrate the range of potential nanoparticle applications. Thus, surface enhanced Raman scattering nanoparticles are being developed to achieve biomarker-targeted, multiplexed imaging for tissue characterization by endoscopy, while lipid-porphyrin nanoparticles can be conjugated to targeting agents and visualized through high red/near-infrared absorption using photoacoustic methods as well as being used to enhance and spatially-localize photothermal treatment. Optimal nanoparticles for photodynamic therapy are also discussed. Challenges in the translation into clinical practice of emerging nanoparticle-enabled endoscopies are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.J. Spaner, W.G. Warnock, A brief history of endoscopy, laparoscopy, and laparoscopic surgery. J. Laparoendosc. Adv. Surg. Tech. A. 7(6), 369–373 (1997)

    Article  Google Scholar 

  2. J. Kovaleva, F.T.M. Peters, H.C. van der Mei, J.E. Degener, Transmission of infection by flexible gastrointestinal endoscopy and bronchoscopy. Clin. Microbiol. Rev. 26(2), 231–254 (2013)

    Article  Google Scholar 

  3. P.Z. McVeigh, R. Sacho, R.A. Weersink, V.M. Pereira, W. Kucharczyk, E.J. Seibel, B.C. Wilson, T. Krings, High-resolution angioscopic imaging during endovascular neurosurgery. Neurosurgery 75(2), 171–179 (2014)

    Article  Google Scholar 

  4. C.M. Lee, C.J. Engelbrecht, T.D. Soper, F. Helmchen, E.J. Seibel, Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J. Biophotonics 3(5–6), 385–407 (2010)

    Article  Google Scholar 

  5. N. Howlader, A. Noone, M. Krapcho, J. Garshell, D. Miller, S. Altekruse, C. Kosary, M. Yu, J. Ruhl, Z. Tatalovich, A. Mariotto, R. Lewis, H. Chen, E. Feuer, K.C. (eds), SEER Cancer Stat. Rev. 1975–2011. National Cancer Institute. Bethesda, MD (2014), http://seer.cancer.gov/csr/1975_2011/. Accessed Sept 2014

  6. J.M. Weaver, C.S. Ross-Innes, R.C. Fitzgerald, The ‘-omics’ revolution and oesophageal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 11(1), 19–27 (2014)

    Article  Google Scholar 

  7. A. Rastogi, D.S. Early, N. Gupta, A. Bansal, V. Singh, M. Ansstas, S.S. Jonnalagadda, C.E. Hovis, S. Gaddam, S.B. Wani, S.A. Edmundowicz, P. Sharma, Randomized, controlled trial of standard-definition white-light, high-definition white-light, and narrow-band imaging colonoscopy for the detection of colon polyps and prediction of polyp histology. Gastrointest. Endosc. 74(3), 593–602 (2011)

    Article  Google Scholar 

  8. M.J. Bruno, Magnification endoscopy, high resolution endoscopy, and chromoscopy; towards a better optical diagnosis. Gut 52(Suppl IV), iv7–iv11 (2003)

    Google Scholar 

  9. R.S. Gurjar, V. Backman, L.T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R.R. Dasari, M.S. Feld, Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 7(11), 1245–1248 (2001)

    Article  Google Scholar 

  10. N. Ishimura, Y. Amano, G. Uno, T. Yuki, S. Ishihara, Y. Kinoshita, Endoscopic characteristics of short-segment Barrett’s esophagus, focusing on squamous islands and mucosal folds. J. Gastroenterol. Hepatol. 27(s3), 82–87 (2012)

    Google Scholar 

  11. M.W. Shahid, M.B. Wallace, Endoscopic imaging for the detection of esophageal dysplasia and carcinoma. Gastrointest. Endosc. Clin. N. Am. 20(1), 11–24 (2010)

    Google Scholar 

  12. J.H. Kinsey, D.A. Cortese, Endoscopic system for simultaneous visual examination and electronic detection of fluorescence. Rev. Sci. Instrum. 51(10), 1403–1406 (1980)

    Article  Google Scholar 

  13. M. Sato, A. Sakurada, M. Sagawa, M. Minowa, H. Takahashi, T. Oyaizu, Y. Okada, Y. Matsumura, T. Tanita, T. Kondo, Diagnostic results before and after introduction of autofluorescence bronchoscopy in patients suspected of having lung cancer detected by sputum cytology in lung cancer mass screening. Lung Cancer 32(3), 247–253 (2001)

    Article  Google Scholar 

  14. W.L. Curvers, R. Singh, L. Song, H.C. Wolfsen, K. Ragunath, K. Wang, M.B. Wallace, P. Fockens, J. Bergman, Endoscopic tri-modal imaging for detection of early neoplasia in Barrett’s oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 57(2), 167–172 (2008)

    Article  Google Scholar 

  15. W.L. Curvers, L.A. Herrero, M.B. Wallace, L. Song, K. Ragunath, H.C. Wolfsen, G.A. Prasad, K.K. Wang, V. Subramanian, B. Weusten, F.J. Ten Kate, J. Bergman, Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in barrett’s esophagus. Gastroenterology 139(4), 1106–1114 (2010)

    Google Scholar 

  16. J. Mizeret, G. Wagnieres, T. Stepinac, H. VandenBergh, Endoscopic tissue characterization by frequency-domain fluorescence lifetime imaging (FD-FLIM). Lasers Med. Sci. 12(3), 209–217 (1997)

    Article  Google Scholar 

  17. P.C. Schneider, R.M. Clegg, Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications. Rev. Sci. Instrum. 68(11), 4107–4119 (1997)

    Article  Google Scholar 

  18. J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, G. Wagnieres, Instrumentation for real-time fluorescence lifetime imaging in endoscopy. Rev. Sci. Instrum. 70(12), 4689–4701 (1999)

    Article  Google Scholar 

  19. S.-Y. Kim, S.-J. Myung, Optical molecular imaging for diagnosing intestinal diseases. Clin. Endosc. 46(6), 620–626 (2013)

    Article  Google Scholar 

  20. C.S. Betz, H. Stepp, P. Janda, S. Arbogast, G. Grevers, R. Baumgartner, A. Leunig, A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis. Int. J. Cancer 97(2), 245–252 (2002)

    Article  Google Scholar 

  21. B.E. Bouma, G.J. Tearney, C.C. Compton, N.S. Nishioka, High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest. Endosc. 51(4), 467–474 (2000)

    Article  Google Scholar 

  22. V.X.D. Yang, M.L. Gordon, S.J. Tang, N.E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B.C. Wilson, I.A. Vitkin, High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts. Opt. Express 11(19), 2416–2424 (2003)

    Article  Google Scholar 

  23. M.J. Suter, P.A. Jillella, B.J. Vakoc, E.F. Halpern, M. Mino-Kenudson, G.Y. Lauwers, B.E. Bouma, N.S. Nishioka, G.J. Tearney, Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine. Gastrointest. Endosc. 71(2), 346–353 (2010)

    Article  Google Scholar 

  24. X.D. Wang, Y.J. Pang, G. Ku, X.Y. Xie, G. Stoica, L.H.V. Wang, Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21(7), 803–806 (2003)

    Article  Google Scholar 

  25. L.H.V. Wang, S. Hu, Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)

    Article  Google Scholar 

  26. K.K. Ng, M. Shakiba, E. Huynh, R.A. Weersink, Á. Roxin, B.C. Wilson, G. Zheng, Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications. ACS Nano. 8(8), 8363–8373 (2014)

    Article  Google Scholar 

  27. C.Y. Chung, J. Boik, E.O. Potma, Biomolecular imaging with coherent nonlinear vibrational microscopy. Annu. Rev. Phys. Chem. 64, 77–99 (2013)

    Google Scholar 

  28. B.G. Saar, R.S. Johnston, C.W. Freudiger, X.S. Xie, E.J. Seibel, Coherent Raman scanning fiber endoscopy. Opt. Lett. 36(13), 2396–2398 (2011)

    Article  Google Scholar 

  29. Y.N. Konan, R. Gurny, E. Allemann, State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B-Biol. 66(2), 89–106 (2002)

    Article  Google Scholar 

  30. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J.R. Lakowicz, C.D. Geddes, Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr. Opin. Biotechnol. 16(1), 55–62 (2005)

    Article  Google Scholar 

  31. O.G. Tovmachenko, C. Graf, D.J. van den Heuvel, A. van Blaaderen, H.C. Gerritsen, Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv. Mater. 18(1), 91–95 (2006)

    Article  Google Scholar 

  32. P.P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, R. Rinaldi, Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 1(2), 126–130 (2006)

    Google Scholar 

  33. A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 27(4), 241–250 (1998)

    Article  Google Scholar 

  34. X.M. Qian, X.H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S.M. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26(1), 83–90 (2008)

    Article  Google Scholar 

  35. A.A. Ghazani, J.A. Lee, J. Klostranec, Q. Xiang, R.S. Dacosta, B.C. Wilson, M.S. Tsao, W.C.W. Chan, High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Lett. 6(12), 2881–2886 (2006)

    Article  Google Scholar 

  36. B. Ballou, B.C. Lagerholm, L.A. Ernst, M.P. Bruchez, A.S. Waggoner, Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15(1), 79–86 (2004)

    Article  Google Scholar 

  37. X.H. Gao, L.L. Yang, J.A. Petros, F.F. Marshal, J.W. Simons, S.M. Nie, In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16(1), 63–72 (2005)

    Article  Google Scholar 

  38. C.Y. Yang, V. Hou, L.Y. Nelson, E.J. Seibel, Mitigating fluorescence spectral overlap in wide-field endoscopic imaging. J. Biomed. Opt. 18(8), 086012 (2013)

    Google Scholar 

  39. D.C. Adler, S.W. Huang, R. Huber, J.G. Fujimoto, Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt. Express 16(7), 4376–4393 (2008)

    Article  Google Scholar 

  40. A.L. Oldenburg, M.N. Hansen, D.A. Zweifel, A. Wei, S.A. Boppart, Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Opt. Express 14(15), 6724–6738 (2006)

    Article  Google Scholar 

  41. Q. Zhang, N. Iwakuma, P. Sharma, B.M. Moudgil, C. Wu, J. McNeill, H. Jiang, S.R. Grobmyer, Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 20(39), 395102 (2009)

    Google Scholar 

  42. Y.S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, S. Emelianov, Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 11(2), 348–354 (2011)

    Article  Google Scholar 

  43. J.F. Lovell, C.S. Jin, E. Huynh, H. Jin, C. Kim, J.L. Rubinstein, W.C. Chan, W. Cao, L.V. Wang, G. Zheng, Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 10(4), 324–332 (2011)

    Article  Google Scholar 

  44. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B.R. Smith, T.J. Ma, O. Oralkan, Z. Cheng, X.Y. Chen, H.J. Dai, B.T. Khuri-Yakub, S.S. Gambhir, Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3(9), 557–562 (2008)

    Article  Google Scholar 

  45. L. Xi, S.R. Grobmyer, G.Y. Zhou, W.P. Qian, L. Yang, H.B. Jiang, Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents. J. Biophotonics 7(6), 401–409 (2014)

    Article  Google Scholar 

  46. Y. Zhang, M. Jeon, L.J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T.E. Barnhart, P. Alexandridis, J.D. Huizinga, M. Seshadri, W. Cai, C. Kim, J.F. Lovell, Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nano. 9(8), 631–638 (2014)

    Article  Google Scholar 

  47. J.M. Yang, R.M. Chen, C. Favazza, J.J. Yao, C.Y. Li, Z.L. Hu, Q.F. Zhou, K.K. Shung, L.V. Wang, A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy. Opt. Express 20(21), 23944–23953 (2012)

    Article  Google Scholar 

  48. R. Naccache, E.M. Rodriguez, N. Bogdan, F. Sanz-Rodriguez, C. Cruz Mdel, A.J. Fuente, F. Vetrone, D. Jaque, J.G. Sole, J.A. Capobianco, High resolution fluorescence imaging of cancers using lanthanide ion-doped upconverting nanocrystals. Cancers 4(4), 1067–1105 (2012)

    Google Scholar 

  49. F. Wang, D. Banerjee, Y.S. Liu, X.Y. Chen, X.G. Liu, Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8), 1839–1854 (2010)

    Article  Google Scholar 

  50. Y.W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S.Y. Leigh, D. Meza, P.Z. McVeigh, B.C. Wilson, J.T. Liu, Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. Technology 2(2), 118–132 (2014)

    Article  Google Scholar 

  51. E. Garai, S. Sensarn, C.L. Zavaleta, D. Van de Sompel, N.O. Loewke, M.J. Mandella, S.S. Gambhir, C.H. Contag, High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device. J. Biomed. Opt. 18(9), 096008 (2013)

    Article  Google Scholar 

  52. R.J. Mallia, P.Z. McVeigh, C.J. Fisher, I. Veilleux, B.C. Wilson, Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes. Nanomedicine 10(1), 89–101 (2014)

    Google Scholar 

  53. C.L. Zavaleta, E. Garai, J.T.C. Liu, S. Sensarn, M.J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C.H. Contag, S.S. Gambhir, A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl. Acad. Sci. U. S. A. 110(25), E2288–E2297 (2013)

    Article  Google Scholar 

  54. P.Z. McVeigh, R.J. Mallia, I. Veilleux, B.C. Wilson, Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo. J. Biomed. Opt. 18(4), 046011 (2013)

    Article  Google Scholar 

  55. J. Winther, Porphyrin photodynamic therapy in an experimental retinoblastoma model. Ophthalmic. Paediatr. Genet. 8(1), 49–52 (1987)

    Article  Google Scholar 

  56. T.D. MacDonald, T.W. Liu, G. Zheng, An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew. Chem. 53(27), 6956–6959 (2014)

    Article  Google Scholar 

  57. J.M. Yang, K. Maslov, H.C. Yang, Q.F. Zhou, K.K. Shung, L.H.V. Wang, Photoacoustic endoscopy. Opt. Lett. 34(10), 1591–1593 (2009)

    Article  Google Scholar 

  58. C.S. Jin, Porphyrin-based Nanostructure-Dependent Phototherapy. Ph.D. Thesis, University of Toronto (2014)

    Google Scholar 

  59. T. Tanaka, S. Matono, T. Nagano, K. Murata, S. Sueyoshi, H. Yamana, K. Shirouzu, H. Fujita, Photodynamic therapy for large superficial squamous cell carcinoma of the esophagus. Gastrointest. Endosc. 73(1), 1–6 (2011)

    Article  Google Scholar 

  60. J.P. Celli, B.Q. Spring, I. Rizvi, C.L. Evans, K.S. Samkoe, S. Verma, B.W. Pogue, T. Hasan, Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110(5), 2795–2838 (2010)

    Article  Google Scholar 

  61. K. Ichikawa, Y. Takeuchi, S. Yonezawa, T. Hikita, K. Kurohane, Y. Namba, N. Oku, Antiangiogenic photodynamic therapy (PDT) using Visudyne causes effective suppression of tumor growth. Cancer Lett. 205(1), 39–48 (2004)

    Article  Google Scholar 

  62. T. Stuchinskaya, M. Moreno, M.J. Cook, D.R. Edwards, D.A. Russell, Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem. Photobiol. Sci. 10(5), 822–831 (2011)

    Article  Google Scholar 

  63. P. Huang, Z.M. Li, J. Lin, D.P. Yang, G. Gao, C. Xu, L. Bao, C.L. Zhang, K. Wang, H. Song, H.Y. Hu, D.X. Cui, Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials 32(13), 3447–3458 (2011)

    Article  Google Scholar 

  64. X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, W. Chen, X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine 9(15), 2339–2351 (2014)

    Google Scholar 

  65. A.C.S. Samia, X.B. Chen, C. Burda, Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125(51), 15736–15737 (2003)

    Article  Google Scholar 

  66. M.F. Kircher, A. de la Zerda, J.V. Jokerst, C.L. Zavaleta, P.J. Kempen, E. Mittra, K. Pitter, R.M. Huang, C. Campos, F. Habte, R. Sinclair, C.W. Brennan, I.K. Mellinghoff, E.C. Holland, S.S. Gambhir, A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18(5), 829–U235 (2012)

    Article  Google Scholar 

  67. P.Z. McVeigh, Development of a Platform for Surface Enhanced Raman Scattering Endoscopy. Ph.D. Thesis, University of Toronto (2014)

    Google Scholar 

  68. C. Buzea, Pacheco, II, K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2(4), MR17–MR71 (2007)

    Google Scholar 

  69. A.S. Thakor, R. Luong, R. Paulmurugan, F.I. Lin, P. Kempen, C. Zavaleta, P. Chu, T.F. Massoud, R. Sinclair, S.S. Gambhir, The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci. Trans. Med. 3(79), 11 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wilson, B.C., Borel, S. (2016). Nanoparticle-Enabled Optical Endoscopy: Extending the Frontiers of Diagnosis and Treatment. In: Olivo, M., Dinish, U. (eds) Frontiers in Biophotonics for Translational Medicine. Progress in Optical Science and Photonics, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-287-627-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-627-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-626-3

  • Online ISBN: 978-981-287-627-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics