Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

  • 1388 Accesses

Abstract

With the development of digital visual signal processing, efficient and reliable assessment of image quality becomes more and more important. Measuring the image quality is of fundamental importance for image processing applications, where the goal of image quality assessment (IQA) methods is to automatically evaluate the quality of images in agreement with human visual quality judgments. In the past decade, researchers have made great efforts to develop many IQAs to fulfill this goal. According to the availability of reference, these IQAs can be classified into full-reference, reduce-reference, and no-reference IQAs. For most of the applications, there is no reference available during visual signal processing, e.g., decoding of compressed visual signal in client’s terminal without the original signal stored in server. The absence of reference raises a great challenge for visual quality assessment (VQA). To address this challenge, machine learning was widely used to approximate the response of the human visual system (HVS) to visual quality perception. This chapter will present the fundamental knowledge of VQA, overview of the state-of-the-art IQAs in the literature, resource of VQA, standards developed for subjective quality assessment, and summary of all related items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ITU-R Recommendation BT.500-11 (2002) Methodology for the subjective assessment of the quality of television pictures. ITU, Geneva, Switzerland

    Google Scholar 

  2. ITU-R Recommendation BT.710-4 (1998) Subjective assessment methods for image quality in high-definition television. ITU, Geneva, Switzerland

    Google Scholar 

  3. ITU-T Recommendation P.910 (2008) Subjective video quality assessment methods for multimedia applications. ITU, Geneva, Switzerland

    Google Scholar 

  4. ITU-R Recommendation BT.814-1 (1994) Specification and alignment procedures for setting of brightness and contrast of displays. ITU

    Google Scholar 

  5. ITU-R Recommendation BT.1129-2 (1998) Subjective assessment of standard definition digital television (SDTV) systems. ITU

    Google Scholar 

  6. VQEG (2003) Final report from the video quality experts group on the validation of objective models of video quality assessment, phase II

    Google Scholar 

  7. Winkler S, Campos R (2003) Video quality evaluation for Internet streaming applications. In: Proceedings of SPIE/IS and T human vision and electronic imaging, vol 5007. Santa Clara, CA, 20–24 Jan 2003, pp 104–115

    Google Scholar 

  8. Muntean G-M, Perry P, Murphy L (2005) Subjective assessment of the quality-oriented adaptive scheme. IEEE Trans Broadcast 51(3):276–286

    Article  Google Scholar 

  9. Ponomarenko N, Carli M, Lukin V, Egiazarian K, Astola J, Battisti F (2008) Color image database for evaluation of image quality metrics. In Proceedings of IEEE 10th workshop on multimedia signal processing, Cairns, AU, Oct 2008, pp 403–408

    Google Scholar 

  10. De Simone F, Naccari M, Tagliasacchi M, Dufaux F, Tubaro S, Ebrahimi T (2011) Subjective quality assessment of H.264/AVC video streaming with packet losses. EURASIP J Image Video Process 2011:1–12

    Google Scholar 

  11. Mantiuk R, Tomaszewska A, Mantiuk R (2012) Comparison of four subjective methods for image quality assessment. Comput Graph Forum 31:2478–2491

    Article  Google Scholar 

  12. Gulliksen H, Tucker LR (1961) A general procedure for obtaining paired comparisons from multiple rank orders. Psychometrika 26:173–183

    Article  MATH  MathSciNet  Google Scholar 

  13. Silverstein DA, Farrell JE (2001) Efficient method for paired comparison. J Electron Image 10:394–398

    Article  Google Scholar 

  14. Xu Q, Yao Y, Jiang T, Huang Q, Lin W, Yan B (2012) HodgeRank on random graphs for subjective video quality assessment. IEEE Trans Multimedia 14(3):844–857

    Article  Google Scholar 

  15. van Dijk AM, Martens J-B, Watson AB (1995) Quality assessment of coded images using numerical category scaling. Proc SPIE 2451:90–101

    Article  Google Scholar 

  16. LIVE Image Quality Assessment Database. http://live.ece.utexas.edu/research/quality/subjective.htm

  17. Tampere Image Database (2008). http://www.ponomarenko.info/tid2008.htm

  18. Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F, Kuo C-CJ (2014) Image database TID2013: peculiarities, results and perspectives. Signal Process Image Commun 50:57–77

    Google Scholar 

  19. Tampere Image Database (2013). http://www.ponomarenko.info/tid2013.htm

  20. Categorical Image Quality (CSIQ) Database. http://vision.okstate.edu/csiq

  21. IVC Image Quality Database. http://www2.irccyn.ec-nantes.fr/ivcdb

  22. IVC-LAR Database. http://www.irccyn.ecnantes.fr/autrusse/Databases/LAR

  23. Toyoma Database. http://mict.eng.utoyama.ac.jp/mictdb.html

  24. Wireless Imaging Quality (WIQ) Database. http://www.bth.se/tek/rcg.nsf/pages/wiq-db

  25. A57 Database. http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html

  26. MMSP 3D Image Quality Assessment Database. http://mmspg.epfl.ch/cms/page-58394.html

  27. Image Retargeting Subjective Database. http://ivp.ee.cuhk.edu.hk/projects/demo/retargeting/index.html

  28. Vqeg, FRTV Phase I Database (2000). ftp://ftp.crc.ca/crc/vqeg/TestSequences/

  29. IRCCyN/IVC 1080i Database. http://www.irccyn.ec-nantes.fr/spip.php?article541

  30. IRCCyN/IVC SD RoI Database. http://www.irccyn.ec-nantes.fr/spip.php?article551

  31. EPFL-PoliMI Video Quality Assessment Database. http://vqa.como.polimi.it/

  32. LIVE Video Quality Database. http://live.ece.utexas.edu/research/quality/live_video.html

  33. LIVE Wireless Video Quality Assessment Database. http://live.ece.utexas.edu/research/quality/live_wireless_video.html

  34. MMSP 3D Video Quality Assessment Database. http://mmspg.epfl.ch/3dvqa

  35. MMSP Scalable Video Database. http://mmspg.epfl.ch/svd

  36. Vqeg, HDTV Database. http://www.its.bldrdoc.gov/vqeg/projects/hdtv/

  37. IVP Subjective Quality Video Database. http://ivp.ee.cuhk.edu.hk/research/database/subjective/

  38. Lin JY, Song R, Wu C-H, Liu T-J, Wang HQ, Kuo C-CJ (2015) MCL-V: a streaming video quality assessment database. J Vis Commun Image Represent 30:1–9

    Google Scholar 

  39. MCL-V Video Streaming Database. http://mcl.usc.edu/mcl-v-database/

  40. Consumer Digital Video Library. http://www.cdvl.org/

  41. Liu T-J, Lin Y-C, Lin W, Kuo C-CJ (2013) Visual quality assessment: recent developments, coding applications and future trends. APSIPA Trans Sig Inf Process 2, e4:1–20

    Google Scholar 

  42. Engelke U, Zepernick HJ (2007) Perceptual-based quality metrics for image and video services: a survey. In: The 3rd EuroNGI conference on next generation internet networks, May 2007, pp 190–197

    Google Scholar 

  43. Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54(3):660–668

    Article  Google Scholar 

  44. Lin W, Kuo C-CJ (2011) Perceptual visual quality metrics: a survey. J Vis Commun Image Represent 22(4):297–312

    Article  Google Scholar 

  45. Marziliano P, Dufaux F, Winkler S, Ebrahimi T (2002) A no-reference perceptual blur metric. In: Proceedings of IEEE ICIP, Sept 2002, pp 57–60

    Google Scholar 

  46. Pinson MH, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 50(3):312–322

    Article  Google Scholar 

  47. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  48. Teo PC, Heeger DJ (1994) Perceptual image distortion. In: Proceedings of IEEE international conference on image processing, vol 2, pp 982–986

    Google Scholar 

  49. Winkler S (2005) Digital video quality: vision models and metrics. Wiley, New York

    Google Scholar 

  50. Masry MA, Hemami SS (2004) A metric for continuous quality evaluation of compressed video with severe distortions. Signal Process Image Commun 19(2):133–146

    Article  Google Scholar 

  51. Masry M, Hemami SS, Sermadevi Y (2006) A scalable wavelet-based video distortion metric and applications. IEEE Trans Circuits Syst Video Technol 16(2):260–273

    Article  Google Scholar 

  52. Sheikh HR, Bovik AC, de Veciana G (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process 14(12):2117–2128

    Article  Google Scholar 

  53. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15(2):430–444

    Article  Google Scholar 

  54. Luo H (2004) A training-based no-reference image quality assessment algorithm. In: Proceedings of IEEE international conference on image processing

    Google Scholar 

  55. Suresh S, Babu V, Sundararajan N (2006) Image quality measurement using sparse extreme learning machine classifier. In: Proceedings of IEEE ICARCV

    Google Scholar 

  56. Narwaria M, Lin W (2010) Objective image quality assessment based on support vector regression. IEEE Trans Neural Netw 21(3):515–519

    Article  Google Scholar 

  57. Liu T-J, Lin W, Kuo C-CJ (2011) A multi-metric fusion approach to visual quality assessment. In: IEEE the 3rd international workshop on QoMEX, Sep 2011

    Google Scholar 

  58. Narwaria M, Lin W (2011) Video quality assessment using temporal quality variations and machine learning. In: IEEE ICME2011, July 2011

    Google Scholar 

  59. Wang Z, Bovik A (2009) Mean squared error: love it or leave it? IEEE Signal Process Mag 26:98–117

    Google Scholar 

  60. Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54(3):660–668

    Article  Google Scholar 

  61. Daly S (1993) The visible differences predictor: an algorithm for the assessment of image fidelity. In: Watson AB (ed) Digital image human visual. MIT Press, Cambridge, pp 179–206

    Google Scholar 

  62. Lubin J (1995) A visual discrimination model for imaging system design and evaluation. In: Peli E (ed) Vision models for target detection and recognition. World Scientific, Singapore

    Google Scholar 

  63. Watson AB, Hu J, McGowan JF III (2001) DVQ: a digital video quality metric based on human vision. J Electron Image 10(1):20–29

    Article  Google Scholar 

  64. Winkler S (1999) A perceptual distortion metric for digital color video. Proc SPIE 3644:175–184

    Google Scholar 

  65. Wolf S (1997) Measuring the end-to-end performance of digital video systems. IEEE Trans Broadcast 43(3):320–328

    Article  Google Scholar 

  66. Wang Z, Bovik AC, Evan BL (2002) Blind measurement of blocking artifacts in images. Proc Int Conf Image Process 3:981–984

    Google Scholar 

  67. Miyahara M, Kotani K, Algazi VR (1998) Objective picture quality scale (PQS) for image coding. IEEE Trans Commun 46(9):1215–1225

    Article  Google Scholar 

  68. Marziliano P, Dufaux F, Winkler S, Ebrahimi T (2002) A no-reference perceptual blur metric. In: Proceedings of IEEE international conference on image processing (ICIP 02), vol 3, Sept 2002, pp 57–60

    Google Scholar 

  69. Wu HR, Yuen M (1997) A generalized block-edge impairment metric (GBIM) for video coding. IEEE Signal Process Lett 4(11):317–320

    Article  Google Scholar 

  70. Tan KT, Ghanbari M (2000) A multimetric objective picture-quality measurement model for MPEG video. IEEE Trans Circuits Syst Video Technol 10(7):1208–1213

    Article  Google Scholar 

  71. Yu Z, Wu HR, Winkler S, Chen T (2002) Vision-model-based impairment metric to evaluate blocking artifacts in digital video. Proc IEEE 90:154–169

    Article  Google Scholar 

  72. Watson AB, Solomon JA (1997) Model of visual contrast gain control and pattern masking. J Opt Soc Am A 14(9):2379–2391

    Article  Google Scholar 

  73. Sheikh HR, Bovik AC (2002) Image information and visual quality. IEEE Trans Image Process 15(2):430–444

    Article  Google Scholar 

  74. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  75. Sheikh HR, Bovik AC, de Veciana G (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process 14(12):2117–2128

    Article  Google Scholar 

  76. Horita Y, Miyata T, Gunawan IP, Murai T, Ghanbari M (2003) Evaluation model considering static-temporal quality degradation and human memory for sscqe video quality. Proc SPIE Vis Commun Image Process 5150(11):1601–1611

    Google Scholar 

  77. Dijk J, van Grinkel M, van Asselt RJ, van Vliet LJ, Verbeek PW (2003) A new sharpness measure based on gaussian lines and edges. In: Proceedings of the internatioanl conference on computational analysis on images and patterns (CAIP). Lecture Notes in Computer Science, vol 2756. Springer, pp 149–156

    Google Scholar 

  78. Ong E, Lin W, Lu Z, Yao S, Yang X, Jiang L (2003) No reference JPEG-2000 image quality metric. In: Proceedings of IEEE international conference multimedia and expo (ICME), pp 545–548

    Google Scholar 

  79. Faugeras OD (1979) Digital color image processing within the framework of a human visual model. IEEE Trans Acoust Speech Signal Process 27:380–393

    Article  Google Scholar 

  80. Mannos J, Sakrison D (1974) The effects of a visual fidelity criterion of the encoding of images. IEEE Trans Inform Theory 20(4):525–536

    Article  MATH  Google Scholar 

  81. Lukas F, Budrikis Z (1982) Picture quality prediction based on a visual model. IEEE Trans Commun 30:1679–1692

    Article  Google Scholar 

  82. Tong X, Heeger D, Lambrecht CVDB (1999) Video quality evaluation using STCIELAB. SPIE Proc Hum Vis Vis Process Digit Disp 3644:185–196

    Google Scholar 

  83. Sarnoff Corporation (1997) Sarnoff JND vision model. In: Lubin J (ed) Contribution to IEEE G-2.1.6 compression and processing subcommittee

    Google Scholar 

  84. Burt PJ, Adelson EH (1983) The laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540

    Article  Google Scholar 

  85. van den Branden Lambrecht CJ (1996) Perceptual models and architectures for video coding applications. Ph.D. dissertation, Swiss Federal Institute of Technology, Lausanne, Switzerland

    Google Scholar 

  86. Ong E, Lin W, Lu Z, Yao S, Etoh M (2004) Visual distortion assessment with emphasis on spatially transitional regions. IEEE Trans Circuits Syst Video Technol 14(4):559–566

    Article  Google Scholar 

  87. Masry MA, Hemami SS, Sermadevi Y (2006) A scalable wavelet-based video distortion metric and applications. IEEE Trans Circuit Syst Video Technol 16(2):260–273

    Google Scholar 

  88. Zhang Z, Zhang J, Wang X, Guan Q, Chen S (2014) Image quality assessment based on structural saliency. In: 19th International conference on digital signal processing (DSP), Aug 2014, pp 492–496

    Google Scholar 

  89. Hou W, Gao X (2014) Saliency-guided deep framework for image quality assessment. IEEE Trans Multimedia 16(3):785–795

    Google Scholar 

  90. Zhang L, Shen Y, Li H (2014) A visual saliency-induced index for perceptual image quality assessment. IEEE Trans Image Process 23(10):4270–4281

    Article  MathSciNet  Google Scholar 

  91. Watson AB, Solomon JA (1997) Model of visual contrast gain control and pattern masking. J Opt Soc Am A 14(9):2379–2391

    Article  Google Scholar 

  92. Winkler S (2000) Vision models and quality metrics for image processing applications. Ecole Polytecnique Federale De Lausanne (EPFL), Swiss Federal Institute of Technology, Lausanne, Switzerland, Thesis 2313, Dec 2000

    Google Scholar 

  93. Winkler S, Dufaux F (2003) Video quality evaluation for mobile applications. In: Proceedings of SPIE/IS T visual communication image processing, vol 5150, pp 593–603

    Google Scholar 

  94. Caviedes J, Gurbuz S (2002) No-reference sharpness metric based on local edge kurtosis. Proc IEEE Int Conf Image Process (ICIP) 3:53–56

    Google Scholar 

  95. Lin W, Dong L, Xue P (2005) Visual distortion gauge based on discrimination of noticeable contrast changes. IEEE Trans Circuits Syst Video Technol 15(7):900–909

    Article  Google Scholar 

  96. Wang Z, Bovik AC (2004) A universal image quality index. IEEE Signal Process Lett 9(3):81–84

    Article  MATH  Google Scholar 

  97. Dosselmann R, Yang XD (2010) A comprehensive assessment of the structural similarity index. Signal Image Video Process 5(1):81–91

    Google Scholar 

  98. Liu A, Lin W, Narwaria M (2012) Image quality assessment based on gradient similarity. IEEE Trans Image Process 21(4):1500–1512

    Article  MathSciNet  Google Scholar 

  99. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Google Scholar 

  100. Chen Q, Xu Y, Li C, Liu N (2013) An image quality assessment metric based on quaternion wavelet transform. In: IEEE international conference on multimedia and expo worshops (ICMEW), July 2013

    Google Scholar 

  101. Zhang XD, Feng XC, Wang WW, Xue WF (2013) Edge strength similarity for image quality assessment. IEEE Signal Process Lett 20(4):319–322

    Article  Google Scholar 

  102. Wang Y, Jiang TT, Ma SW, Gao W (2012) Novel spatio-temporal structural information based video quality metric. IEEE Trans Circuits Syst Video Technol 22(7):989–998

    Article  Google Scholar 

  103. Qi H, Jiao S, Lin W, Tang L, Shen W (2014) Content-based image quality assessment using semantic information and luminance differences. Electron Lett 50(20):1435–1436

    Article  Google Scholar 

  104. Eskicioglu AM, Gusev A, Shnayderman A (2006) An SVD-based gray-scale image quality measure for local and global assessment. IEEE Trans Image Process 15(2):422–429

    Article  Google Scholar 

  105. Narwaria M, Lin W (2009) Scalable image quality assessment based on structural vectors. In: Proceedings of IEEE workshop on multimedia signal processing (MMSP)

    Google Scholar 

  106. Wolf S, Pinson MH (2002) Video quality measurement techniques. NTIA Report 02-392, June 2002. http://www.its.bldrdoc.gov/publications/2423.aspx

  107. Video Quality Expert Group (VQEG) (2003) Final report from the video quality experts group on the validation of objective models of video quality assessment. Phase II. http://www.vqeg.org. Accessed Aug 2003

  108. Tan KT, Ghanbari M (2000) Blockiness detection for MPEG2-coded video. IEEE Signal Proc Lett 7(8):213–215

    Article  Google Scholar 

  109. Wu S, Lin W, Xie S, Lu Z, Ong E, Yao S (2009) Blind blur assessment for visionbased applications. J Vis Commun Image Represent 20(4):231–241

    Article  Google Scholar 

  110. Chen JYC, Thropp JE (2007) Review of low frame rate effects on human performance. IEEE Trans Systems Man Cybern 37:1063–1076

    Google Scholar 

  111. Yang KC, Guest CC, El-Maleh K, Das PK (2007) Perceptual temporal quality metric for compressed video. IEEE Trans Multimedia 9:1528–1535

    Google Scholar 

  112. Marziliano P, Winkler S, Dufaux F, Ebrahimi T (2004) Perceptual blur and ringing metrics: application to JPEG2000. Signal Process Image Commun 19:163–172

    Google Scholar 

  113. Mei T, Hua X-S, Zhu C-Z, Zhou H-Q, Li S (2007) Home video visual quality assessment with spatiotemporal factors. IEEE Trans Circuits Syst Video Technol 17(6):699–706

    Article  Google Scholar 

  114. Oelbaum T, Keimel C, Diepold K (2009) Rule-based no-reference video quality evaluation using additionally coded videos. IEEE J Sel Top Signal Process 3(2):294–303

    Article  Google Scholar 

  115. Zhai G, Zhang W, Yang X, Lin W, Xu Y (2008) No-reference noticeable blockiness estimation in images. Signal Process Image Commun 23(6):417–432

    Google Scholar 

  116. Ferzli R, Karam LJ (2009) A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans Image Process 18(4):717–728

    Article  MathSciNet  Google Scholar 

  117. Coudoux F-X, Gazalet MG, Derviaux C, Corlay P (2001) Picture quality measurement based on block visibility in discrete cosine transform coded video sequences. J Electron Imaging 10(2):498–510

    Article  Google Scholar 

  118. Liang L, Wang S, Chen J, Ma S, Zhao D, Gao W (2010) No-reference perceptual image quality metric using gradient profiles for JPEG2000. Signal Process Image Commun 25(7):502–516

    Google Scholar 

  119. Moorthy AK, Bovik AC (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350–3364

    Article  MathSciNet  Google Scholar 

  120. Tang H, Joshi N, Kapoor A (2011) Learning a blind measure of perceptual image quality. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), Colorado Springs

    Google Scholar 

  121. Zhang M, Muramastsu C, Zhou X, Hara T, Fujita H (2015) Blind image quality assessment using the joint statistics of generalized local binary patter. IEEE Trans Signal Process (Lett) 22(2):207–210

    Article  Google Scholar 

  122. Xue W, Mou X, Zhang L, Bovik AC, Feng X (2014) Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans Image Process 23(11):4850–4862

    Article  MathSciNet  Google Scholar 

  123. Gao X, Cao F, Tao D, Li X (2013) Universal blind image quality assessment metrics via natural scene statistics and multiple kernel learning. IEEE Trans Neural Netw Learn Syst 24(12):2013–2026

    Google Scholar 

  124. Liu T-J, Lin W, Kuo C-CJ (2013) Image quality assessment using multi-metric fusion (MMF). IEEE Trans Image Process 22(5):1793–1807

    Google Scholar 

  125. Liu T-J, Lin W, Kuo C-CJ (2011) A multi-metric fusion approach to visual quality assessment. In: QoMEX, Sept 2011, pp 72–77

    Google Scholar 

  126. Liu T-J, Lin Y-C, Lin W, Kuo C-CJ. Image quality assessment using paraboosting ensemble. Submitted to Neural Netw Learn Syst

    Google Scholar 

  127. Saad M, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352

    Article  MathSciNet  Google Scholar 

  128. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  Google Scholar 

  129. Mittal A, Muralidhar GS, Ghosh J, Bovik AC (2011) Blind image quality assessment without human training using latent quality factors. IEEE Signal Process Lett 19:75–78

    Article  Google Scholar 

  130. Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20(3):209–212

    Article  Google Scholar 

  131. Narwaria M, Lin W, Cetin E (2011) Scalable image quality assessment with 2D mel-cepstrum and machine learning approach. Pattern Recogn 45(1):299–313

    Article  Google Scholar 

  132. Narwaria M, Lin W (2010) Objective image quality assessment based on support vector regression. IEEE Trans Neural Netw 21(3):515–519

    Article  Google Scholar 

  133. Narwaria M, Lin W (2012) SVD-based quality metric for image and video using machine learning. IEEE Trans Syst Man Cybern Part B 42(2):347–364

    Google Scholar 

  134. Xu L, Lin W, Li J, Wang X, Yan Y, Fang Y (2014) Rank learning on training set selection and image quality assessment. In: ICME2014

    Google Scholar 

  135. Xu Q, Yao Y, Jiang T, Huang Q, Lin W, Yan B (2012) HodgeRank on random graphs for subjective video quality assessment. IEEE Trans Multimedia 14(3):844–857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xu, L., Lin, W., Kuo, CC.J. (2015). Introduction. In: Visual Quality Assessment by Machine Learning. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-287-468-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-468-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-467-2

  • Online ISBN: 978-981-287-468-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics