Skip to main content

Arbitrage and Valuation of Different Contracts

  • Chapter
  • First Online:
The Ownership of the Firm, Corporate Finance, and Derivatives

Part of the book series: SpringerBriefs in Finance ((BRIEFSFINANCE))

  • 1293 Accesses

Abstract

In this chapter, I first derive the Arbitrage Theorem, and use the theorem to show that, in a complete market with no transaction costs and no arbitrage, all securities or assets are derivatives for each other, and they are dependent on each other. It also shows a capital structure irrelevancy proposition: changes in firms’ debt-equity ratios will not affect equityholders’ wealth (welfare), and equityholders’ preferences toward risk (or variance) are irrelevant. When the firm moves from a more certain project to a more uncertain one, the time-0 price of equity will increase, but the time-0 prices of fixed-income assets will decrease. Different labor contractual arrangements will not affect the time-0 price of labor input. When the firm moves from a more certain project to a more uncertain one, the time-0 price of labor input will increase if it is under the share or the mixed contract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also Bazaraa et al. (1993, p. 47).

  2. 2.

    In incomplete markets, assets may not be replicated, but with no arbitrage (i.e., System 2 of Theorem 5.4 has a solution), they are still priced by the same (which may not be unique) risk neutral probability measure. See Appendix A.

  3. 3.

    For \( S_{0} u > S_{0} d > K \), \( c = S_{0} - \frac{K}{1 + r} \) and \( p = 0 \). For \( K > S_{0} u > S_{0} d \), \( p = \frac{K}{1 + r} - S_{0} \) and \( c = 0 \).

  4. 4.

    Note that even before the firm changes its debt-equity ratio, the equityholders can buy 3/2 shares of the existing equity (\( E_{0}^{1} \)) and borrow $60\( ( {=} 100 \times \frac{3}{2} - 90) \) from the money market to create the time-1 payment of the new equity (\( E_{0}^{{1^{\prime \prime }}} \)):

    $$ \left\{ {\begin{array}{*{20}l} {450/3 = (3/2)(150) + (1 + 0.25)(90 - (3/2) \times 100)} \hfill \\ {0 = ( 3 / 2 )(50) + (1 + 0.25)(90 - (3/2) \times 100)} \hfill \\ \end{array} } \right. $$
  5. 5.

    After the firm changes its debt-equity ratio, the debtholders can also combine the new debt with other securities to create a home-made debt which will give exactly the same time-1 payment of the old debt (i.e., debtholders’ preferences toward risk/variance are irrelevant). Thus, in complete markets, mean-variance analysis may not be meaningful.

  6. 6.

    In an incomplete market, after the firm changes its debt-equity ratio, the equityholders may not be able to create a home-made equity to replicate the time-1 payment of the old equity. See Appendix B.

  7. 7.

    Because the debtholders’ time-1 payments have an upper bound, they will not benefit if the more uncertain project succeeds, but will suffer if the more uncertain project fails. Note that in some cases, the time-0 price of a firm may decrease when the firm moves to a more uncertain project. See Appendix C.

  8. 8.

    With the assumption of certainty, Cheung (1968) finds that different labor contractual arrangements will not affect the efficiency of resource allocation.

References

  • Bazaraa M, Sherali H, Shetty CM (1993) Nonlinear programming: theory and algorithms. Wiley, New York

    Google Scholar 

  • Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81:637–654

    Article  Google Scholar 

  • Chang KP (2012) Are securities also derivatives? Am J Oper Res 2: 430–441. doi: 10.4236/ajor.2012.23051. Also in http://ssrn.com/abstract=987522

  • Cheung S (1968) Private property rights and sharecropping. J Polit Econ 76:1107–1122

    Article  Google Scholar 

  • Cheung S (1969) The theory of share tenancy. The University of Chicago Press, Chicago

    Google Scholar 

  • Cox J, Ross S, Rubinstein M (1979) Option pricing: a simplified approach. J Financ Econ 7:229–263

    Article  Google Scholar 

  • Huang C, Litzenberger R (1988) Foundations for financial economics. Elsevier Science Publishing Co., New York

    Google Scholar 

  • Litzenberger R, Sosin H (1977) The theory of recapitalizations and the evidence of dual purpose funds. J Fin 32:1433–1455

    Article  Google Scholar 

  • Miller M (1988) The Modigliani-Miller propositions: after thirty years. J Econ Perspec 2:99–120

    Article  Google Scholar 

  • Modigliani F, Miller M (1963) Corporate income taxes and the cost of capital: a correction. Am Econ Rev 53:433–443

    Google Scholar 

  • Modigliani F, Miller M (1958) The cost of capital, corporation finance and the theory of investment. Am Econ Rev 48:261–297

    Google Scholar 

  • Ross S, Westerfield R, Jaffe J (2012) Corporate finance. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Ping Chang .

Appendices

Appendix A: Incomplete Market

In incomplete markets , securities may not be replicated, but with no arbitrage (i.e., System 2 of Theorem 5.4 has a solution), they are still priced by the same (which may not be unique) risk neutral probability measure. For example, assume that only two securities (one of them is a money market with interest rate \( r = 0.25 \)) exist in a non-arbitrage, one-period, five states of nature world:

$$ \left\{ {\begin{array}{*{20}l} {\text{Money Market (Security 1):}} \hfill & {S_{0}^{1} = \frac{1}{1 + 0.25}(p_{1} \times 1.25 + p_{2} \times 1.25 + p_{3} \times 1.25 + p_{4} \times 1.25 + p_{5} \times 1.25)} \hfill \\ {\text{Security 2:}} \hfill & {S_{0}^{2} = \frac{1}{1 + 0.25}(p_{1} \times 10 + p_{2} \times 8 + p_{3} \times 4 + p_{4} \times 2 + p_{5} \times 1)} \hfill \\ {} \hfill & {p_{1} ,\;p_{2} ,\;p_{3} ,\;p_{4} ,\;p_{5} \ge 0;\quad \sum\limits_{i = 1}^{5} {p{}_{i} = 1} } \hfill \\ \end{array} } \right. $$

Suppose that there is a new security: Security 3 whose time-1 payoff is: \( {\mathbf{c}} = \left[ {\begin{array}{*{20}c} {12.8} \hfill \\ {10.4} \hfill \\ {5.6} \hfill \\ {3.2} \hfill \\ 2 \hfill \\ \end{array} } \right] \). Because c lies in the subspace spanned by \( {\mathbf{a}} = \left[ {\begin{array}{*{20}c} {1.25} \hfill \\ {1.25} \hfill \\ {1.25} \hfill \\ {1.25} \hfill \\ {1.25} \hfill \\ \end{array} } \right] \) and \( {\mathbf{b}} = \left[ {\begin{array}{*{20}c} {10} \hfill \\ 8 \hfill \\ 4 \hfill \\ 2 \hfill \\ 1 \hfill \\ \end{array} } \right] \) (i.e., \( {\mathbf{c}} \in S = \{ \alpha {\mathbf{a}} + \beta {\mathbf{b}}:\;\alpha ,\;\beta \in R^{1} \} \)), the time-1 payoff of Security 3 can be replicated by those of Securities 1 and 2:

$$ \left[ {\begin{array}{*{20}c} {12.8} \hfill \\ {10.4} \hfill \\ {5.6} \hfill \\ {3.2} \hfill \\ 2 \hfill \\ \end{array} } \right] = (0.64)\left[ {\begin{array}{*{20}c} {1.25} \hfill \\ {1.25} \hfill \\ {1.25} \hfill \\ {1.25} \hfill \\ {1.25} \hfill \\ \end{array} } \right] + (1.2)\left[ {\begin{array}{*{20}c} {10} \hfill \\ 8 \hfill \\ 4 \hfill \\ 2 \hfill \\ 1 \hfill \\ \end{array} } \right] $$

The time-0 price of Security 3 is: \( S_{0}^{3} = (0.64)\;S_{0}^{1} + (1.2)\;S_{0}^{2} \), and with no arbitrage, the three securities are priced by the same risk neutral probability measure:

$$ \left\{ {\begin{array}{*{20}l} {\text{Money Market (Security 1):}} \hfill & {S_{0}^{1} = \frac{1}{1 + 0.25}(p_{1} \times 1.25 + p_{2} \times 1.25 + p_{3} \times 1.25 + p_{4} \times 1.25 + p_{5} \times 1.25)} \hfill \\ {\text{Security 2:}} \hfill & {S_{0}^{2} = \frac{1}{1 + 0.25}(p_{1} \times 10 + p_{2} \times 8 + p_{3} \times 4 + p_{4} \times 2 + p_{5} \times 1)} \hfill \\ {\text{Security 3:}} \hfill & {\begin{array}{*{20}l} {S_{0}^{3} = \frac{1}{1 + 0.25}(p_{1} \times 12.8 + p_{2} \times 10.4 + p_{3} \times 5.6 + p_{4} \times 3.2 + p_{5} \times 2)} \hfill \\ { = (0.64)\;S_{0}^{1} + (1.2)\;S_{0}^{2} } \hfill \\ \end{array} } \hfill \\ {} \hfill & {p_{1} ,\;p_{2} ,\;p_{3} ,\;p_{4} ,\;p_{5} \ge 0;\quad \sum\limits_{i = 1}^{5} {p{}_{i} = 1} } \hfill \\ \end{array} } \right. $$

Suppose that the time-1 payoff of Security 3 is: \( {\mathbf{c}}^{\prime } = \left[ {\begin{array}{*{20}c} {11.25} \hfill \\ {9.25} \hfill \\ {5.25} \hfill \\ {3.25} \hfill \\ 2 \hfill \\ \end{array} } \right] \). Because \( {\mathbf{c}}^{\prime } \notin S = \{ \alpha \;{\mathbf{a}} + \beta \;{\mathbf{b}}:\;\alpha ,\;\beta \in R^{1} \} \), the time-1 payoff of Security 3 cannot be replicated by those of Securities 1 and 2. But with no arbitrage (i.e., System 2 of Theorem 5.4 has a solution), all the three securities will be priced by the same risk neutral probability measure:

$$ \left\{ {\begin{array}{*{20}l} {\text{Money Market (Security 1):}} \hfill & {S_{0}^{1} = \frac{1}{1 + 0.25}(p_{1} \times 1.25 + p_{2} \times 1.25 + p_{3} \times 1.25 + p_{4} \times 1.25 + p_{5} \times 1.25)} \hfill \\ {\text{Security 2:}} \hfill & {S_{0}^{2} = \frac{1}{1 + 0.25}(p_{1} \times 10 + p_{2} \times 8 + p_{3} \times 4 + p_{4} \times 2 + p_{5} \times 1)} \hfill \\ {\text{Security 3:}} \hfill & {S_{0}^{3\prime } = \frac{1}{1 + 0.25}(p_{1} \times 11.25 + p_{2} \times 9.25 + p_{3} \times 5.25 + p_{4} \times 3.25 + p_{5} \times 2)} \hfill \\ {} \hfill & {p_{1} ,\;p_{2} ,\;p_{3} ,\;p_{4} ,\;p_{5} \ge 0;\quad \sum\limits_{i = 1}^{5} {p{}_{i} = 1} } \hfill \\ \end{array} } \right. $$

where \( p_{1} ,\;p_{2} ,\;p_{3} ,\;p_{4} ,\;p_{5} \) may not be unique.

Appendix B: Incomplete Market and Replication of Securities

In an incomplete market , after the firm changes its debt-equity ratio , the equityholders may not be able to create a home-made equity to replicate the time-1 payment of the old equity. For example, assume that only two securities exist (where one of them is a money market with risk-free interest rate \( r = 0.25 \)) in a no-arbitrage, one-period, five states of nature world:

$$ \left\{ {\begin{array}{*{20}l} {\text{Money Market (Security 1):}} \hfill & {S_{0}^{1} = 1 = \frac{1}{1 + 0.25}(1.25 \times p_{1} + 1.25 \times p_{2} + 1.25 \times p_{3} + 1.25 \times p_{4} + 1.25 \times p_{5} )} \hfill \\ {\text{Security 2:}} \hfill & {S_{0}^{2} = 4 = \frac{1}{1 + 0.25}(10 \times p_{1} + 8 \times p_{2} + 4 \times p_{3} + 2 \times p_{4} + 1 \times p_{5} )} \hfill \\ {} \hfill & {p_{1} ,\;p_{2} ,\;p_{3} ,\;p_{4} ,\;p_{5} \ge 0;\quad \sum\limits_{i = 1}^{5} {p{}_{i} = 1} } \hfill \\ \end{array} } \right. $$
(B1)

where the risk neutral probability can be \( {\mathbf{p}}^{\prime } = \left[ {\begin{array}{*{20}c} {0.2} \hfill \\ {0.2} \hfill \\ {0.2} \hfill \\ {0.2} \hfill \\ {0.2} \hfill \\ \end{array} } \right] \) or \( {\mathbf{p}}^{{\prime \prime }} = \left[ {\begin{array}{*{20}c} {7/90} \hfill \\ {1/5} \hfill \\ {3/5} \hfill \\ {1/10} \hfill \\ {1/45} \hfill \\ \end{array} } \right] \) or others.

Assume that Security 2 is an all-equity firm and it plans to issue a riskless debt, e.g., a debtholder pays $0.8 at time 0 and obtains $1 at time 1:

$$ {\text{By}}\;{\mathbf{p}}^{\prime } ,\;{\text{Security}}\;2{:}\quad \left\{ {\begin{array}{*{20}l} {E_{0}^{{\prime }} = 3.2 = \frac{1}{1 + 0.25}(9 \times 0.2 + 7 \times 0.2 + 3 \times 0.2 + 1 \times 0.2 + 0 \times 0.2)} \hfill \\ {D_{0}^{{\prime }} = 0.8 = \frac{1}{1 + 0.25}(1 \times 0.2 + 1 \times 0.2 + 1 \times 0.2 + 1 \times 0.2 + 1 \times 0.2)} \hfill \\ \end{array} } \right. $$

or,

$$ {\text{by}}\;{\mathbf{p}}^{{\prime \prime }} ,\;{\text{Security}}\;2{:}\quad \left\{ {\begin{array}{*{20}l} {E_{0}^{{\prime \prime }} = 3.2 = \frac{1}{1 + 0.25}\left( {9 \times \frac{7}{90} + 7 \times \frac{1}{5} + 3 \times \frac{3}{5} + 1 \times \frac{1}{10} + 0 \times \frac{1}{45}} \right)} \hfill \\ {D_{0}^{{\prime \prime }} = 0.8 = \frac{1}{1 + 0.25}\left( {1 \times \frac{7}{90} + 1 \times \frac{1}{5} + 1 \times \frac{3}{5} + 1 \times \frac{1}{10} + 1 \times \frac{1}{45}} \right)} \hfill \\ \end{array} } \right. $$

That is, recapitalization through issuing riskless debt does not change the market value of the firm (i.e., the time-0 price of Security 2 is always $4), and the time-0 prices of equity and debt are independent of the risk neutral probability measure used. Also, after the firm issues riskless debt, the equityholder can always create a home-made equity by combining the new equity (\( E_{0}^{{\prime }} \) or \( E_{0}^{{\prime \prime }} \)) with investing $0.8 in the money market, which will give exactly the same time-1 payment of the old equity: \( {\mathbf{b}} = \left[ {\begin{array}{*{20}c} {10} \hfill \\ 8 \hfill \\ 4 \hfill \\ 2 \hfill \\ 1 \hfill \\ \end{array} } \right] \).

Suppose that the time-1 payment of the debt is risky: \( {\mathbf{d}}_{{\mathbf{1}}} = \left[ {\begin{array}{*{20}c} 3 \hfill \\ 3 \hfill \\ 3 \hfill \\ 2 \hfill \\ 1 \hfill \\ \end{array} } \right]. \) Then the time-1 payment of the equity is: \( {\mathbf{e}}_{{\mathbf{1}}} = \left[ {\begin{array}{*{20}c} 7 \hfill \\ 5 \hfill \\ 1 \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{array} } \right] \). Since \( {\mathbf{b}} \notin S = \{ \alpha {\mathbf{a}} + \beta {\mathbf{e}}_{{\mathbf{1}}} :\alpha ,\;\beta \in R^{1} \} \) where \( {\mathbf{a}} = \left[ {\begin{array}{*{20}c} {1.25} \hfill \\ {1.25} \hfill \\ {1.25} \hfill \\ {1.25} \hfill \\ {1.25} \hfill \\ \end{array} } \right] \) and \( {\mathbf{b}} = \left[ {\begin{array}{*{20}c} {10} \hfill \\ 8 \hfill \\ 4 \hfill \\ 2 \hfill \\ 1 \hfill \\ \end{array} } \right] \), b cannot be replicated by \( {\mathbf{a}} \) and \( {\mathbf{e}}_{{\mathbf{1}}} \). That is, the equityholder cannot combine the new equity \( {\mathbf{e}}_{{\mathbf{1}}} \) with the money market to create a home-made equity to replicate the time-1 payoff of the old equity: \( {\mathbf{b}} = \left[ {\begin{array}{*{20}c} {10} \hfill \\ 8 \hfill \\ 4 \hfill \\ 2 \hfill \\ 1 \hfill \\ \end{array} } \right] \). Also, with different risk neutral probability measures :

$$ \begin{aligned} & {\text{By}}\;{\mathbf{p}}^{{\prime }} ,\;{\text{Security}}\;2{:}\quad \left\{ {\begin{array}{*{20}l} {e_{0}^{{\prime }} = 2.08 = \frac{1}{1 + 0.25}(7 \times 0.2 + 5 \times 0.2 + 1 \times 0.2 + 0 \times 0.2 + 0 \times 0.2)} \hfill \\ {d_{0}^{{\prime }} = 1.92 = \frac{1}{1 + 0.25}(3 \times 0.2 + 3 \times 0.2 + 3 \times 0.2 + 2 \times 0.2 + 1 \times 0.2)} \hfill \\ \end{array} } \right. \\ & {\text{By}}\;{\mathbf{p}}^{{\prime \prime }} ,\;{\text{Security}}\;2{:}\quad \left\{ {\begin{array}{*{20}l} {e_{0}^{{\prime \prime }} = 1.71555 = \frac{1}{1 + 0.25}\left( {7 \times \frac{7}{90} + 5 \times \frac{1}{5} + 1 \times \frac{3}{5} + 0 \times \frac{1}{10} + 0 \times \frac{1}{45}} \right)} \hfill \\ {d_{0}^{{\prime \prime }} = 2.28444 = \frac{1}{1 + 0.25}\left( {3 \times \frac{7}{90} + 3 \times \frac{1}{5} + 3 \times \frac{3}{5} + 2 \times \frac{1}{10} + 1 \times \frac{1}{45}} \right)} \hfill \\ \end{array} } \right. \\ \end{aligned} $$

The time-0 price of Security 2 can be the sum of \( e_{0}^{{\prime }} \) and \( d_{0}^{{\prime \prime }} \) (which equals \( {\$ 4} . 3 6 4 4 4> { \$ 4} \)), and with no arbitrage,

$$ \left\{ {\begin{array}{*{20}l} {\text{Money Market (Security 1):}} \hfill & {S_{0}^{1} = 1 = \frac{1}{1 + 0.25}(1.25 \times p_{1} + 1.25 \times p_{2} + 1.25 \times p_{3} + 1.25 \times p_{4} + 1.25 \times p_{5} )} \hfill \\ {\text{Security 2:}} \hfill & {\left\{ {\begin{array}{*{20}l} {e_{0}^{{\prime }} = 2.08 = \frac{1}{1 + 0.25}(7 \times p_{1} + 5 \times p_{2} + 1 \times p_{3} + 0 \times p_{4} + 0 \times p_{5} )} \hfill \\ {d_{0}^{{\prime \prime }} = 2.28444 = \frac{1}{1 + 0.25}(3 \times p_{1} + 3 \times p_{2} + 3 \times p_{3} + 2 \times p_{4} + 1 \times p_{5} )} \hfill \\ \end{array} } \right.} \hfill \\ {} \hfill & {p_{1} ,\;p_{2} ,\;p_{3} ,\;p_{4} ,\;p_{5} \ge 0;\quad \sum\limits_{i = 1}^{5} {p{}_{i} = 1} } \hfill \\ \end{array} } \right. $$

where the risk neutral probability can be \( \left[ {\begin{array}{*{20}c} {0.12127} \hfill \\ {0.24921} \hfill \\ {0.50507} \hfill \\ {0.10445} \hfill \\ {0.02} \hfill \\ \end{array} } \right] \) or \( \left[ {\begin{array}{*{20}c} {0.10984} \hfill \\ {0.25635} \hfill \\ {0.54936} \hfill \\ {0.02445} \hfill \\ {0.06} \hfill \\ \end{array} } \right] \) or others. If this is the case, then with no arbitrage, the time-0 price of Security 2 in Eq. (B1) will be adjusted to $4.36444 in the first place (see also Litzenberger and Sosin 1977; Huang and Litzenberger 1988, pp. 128–129):

$$ \left\{ {\begin{array}{*{20}l} {\text{Money Market (Security 1):}} \hfill & {S_{0}^{1} = 1 = \frac{1}{1 + 0.25}(1.25 \times p_{1} + 1.25 \times p_{2} + 1.25 \times p_{3} + 1.25 \times p_{4} + 1.25 \times p_{5} )} \hfill \\ {\text{Security 2:}} \hfill & {S_{0}^{2} = 4.36444 = \frac{1}{1 + 0.25}(10 \times p_{1} + 8 \times p_{2} + 4 \times p_{3} + 2 \times p_{4} + 1 \times p_{5} )} \hfill \\ {} \hfill & {p_{1} ,\;p_{2} ,\;p_{3} ,\;p_{4} ,\;p_{5} \ge 0;\quad \sum\limits_{i = 1}^{5} {p{}_{i} = 1} } \hfill \\ \end{array} } \right. $$
(B1’)

where \( p_{1} ,\,p_{2} ,\,p_{3} ,\,p_{4} ,\,p_{5} \) may not be unique.

Appendix C: More Uncertain Project and the Firm’s Value

In some cases, the time-0 price of a firm may decrease when the firm moves to a more uncertain project. For example, assume a firm exists in a no-arbitrage, one-period, two states of nature world (where the risk-free interest rate is: \( r = 0.25 \)):

That is, the unique risk neutral probability for this world is: \( \left[ {\begin{array}{*{20}c} {1/16} \hfill \\ {15/16} \hfill \\ \end{array} } \right] \), and

$$ {\text{Firm}}\;{\text{value}} = \left\{ {\begin{array}{*{20}l} {\text{Equity:}} \hfill & {400 = \frac{1}{1 + 0.25}\left( {\frac{1}{16} \times 875 + \frac{15}{16} \times 475} \right)} \hfill \\ {\text{Debt:}} \hfill & {100 = \frac{1}{1 + 0.25}\left( {\frac{1}{16} \times 125 + \frac{15}{16} \times 125} \right)} \hfill \\ \end{array} } \right. $$
(C1)

Suppose that the firm moves to a more uncertain project, and its time-1 payment is \( \left[ {\begin{array}{*{20}c} {2000} \hfill \\ {100} \hfill \\ \end{array} } \right] \) instead of \( \left[ {\begin{array}{*{20}c} {1000} \hfill \\ {600} \hfill \\ \end{array} } \right] \). Then, the time-0 prices of the whole firm, the equity, and the debt decrease:

$$ {\text{Firm}}\;{\text{value}} = \left\{ {\begin{array}{*{20}l} {\text{Equity:}} \hfill & {93.75 = \frac{1}{1 + 0.25}\left( {\frac{1}{16} \times 1875 + \frac{15}{16} \times 0} \right)} \hfill \\ {\text{Debt:}} \hfill & {81.25 = \frac{1}{1 + 0.25}\left( {\frac{1}{16} \times 125 + \frac{15}{16} \times 100} \right)} \hfill \\ \end{array}} \right. $$
(C2)

Since no one benefits, the firm will not move to this more uncertain project, and Eq. (C2) cannot hold.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Chang, KP. (2015). Arbitrage and Valuation of Different Contracts. In: The Ownership of the Firm, Corporate Finance, and Derivatives. SpringerBriefs in Finance. Springer, Singapore. https://doi.org/10.1007/978-981-287-353-8_5

Download citation

Publish with us

Policies and ethics