Skip to main content

Indentation Size Effects in Single Crystal Cu as Revealed by Synchrotron X-ray Microdiffraction

  • Chapter
  • First Online:
Probing Crystal Plasticity at the Nanoscales

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 626 Accesses

Abstract

The observation of Laue peak streaking near small indentations in the (111) surface of a copper single crystal is described. The geometrically necessary dislocation (GND) density is computed from the µSXRD data for a different indentation depths. It is shown that GND density increases with decreasing indentation depth, which is in agreement with a revised Nix-Gao model. This finding supports that the indentation size effect is associated with geometrically necessary dislocations and related strain gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626

    Article  Google Scholar 

  2. Yu YW, Spaepen F (2003) The yield strength of thin copper films on Kapton. J Appl Phys 95:2991–2997

    Article  Google Scholar 

  3. Nix WD (1989) Mechanical properties of thin films. Merall Trans A 20:2217–2245

    Article  Google Scholar 

  4. Stelmashenko NA, Walls MG, Brown LM et al (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41:2855–2865

    Article  Google Scholar 

  5. De Guzman MS, Neubauer G, Flinn P et al (1993) The role of indentation depth on the measured hardness of materials. Mater Res Soc Proc 308:613

    Article  Google Scholar 

  6. Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mat Res 10:853–863

    Article  Google Scholar 

  7. Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Mat 34:559–564

    Article  Google Scholar 

  8. Nix WD, Gao H (1998) Micro-hardness of annealed and work-hardened copper polycrystals. J Mech Phys Solids 46:411–425

    Article  Google Scholar 

  9. Gao H, Huang Y (1999) Y.W.D.W.D., Naturwissenschaftler, 86:507

    Google Scholar 

  10. Gao H, Huang WD, Nix JW et al (1999) Mechanism-based strain gradient plasticity—I. Theory. J Mech Phys Solids 47:1239–1263

    Article  Google Scholar 

  11. Huang Y, Chen JY, Guo TF et al (1999) Analytic and numerical studies on mode I and mode II fracture in elastic-plastic materials with strain gradient effects. Int J Fract 100:1–27

    Article  Google Scholar 

  12. Huang Y, Gao H, Nix WD et al (2000) Mechanism-based strain gradient plasticity—II. Analysis. J Mech Phys Solids 48:99–128

    Article  Google Scholar 

  13. Huang Y, Xue Z, Gao H et al (2000) A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J Mater Res 15:1786–1796

    Article  Google Scholar 

  14. Tymiak NI, Kramer DE, Bahr DF et al (2001) Plastic strain and strain gradients at very small indentation depths. Acta Mater 49:1021–1034

    Article  Google Scholar 

  15. Swadener JG, George EP, Pharr GM (2002) The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids 50:681–694

    Article  Google Scholar 

  16. Durst K, Backes B, Goken M (2005) Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scripta Mat 52:1093–1097

    Article  Google Scholar 

  17. Feng G (2005) The application of contact mechanics in the study of nanoindentation. Dissertation, Stanford University

    Google Scholar 

  18. Durst K, Backes B, Franke O et al (2006) Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mat 54:2547–2555

    Article  Google Scholar 

  19. Basinski SJ, Basinski ZS (1979) Plastic deformation and work hardening. In: Nabarro FRN (ed) Dislocations of solids, vol 4: dislocations in metallurgy. North-Holland Publishing Company, Oxford, p 261

    Google Scholar 

  20. Castell MR, Howie A, Perovic DD et al (1993) Plastic deformation under microindentations in GaAs/AlAs superlattices. Phil Mag Lett 67:89–93

    Article  Google Scholar 

  21. Donovan PE (1989) Plastic flow and fracture of Pd40Ni40P20 metallic glass under an indentor. J Mater Sci 24:523–535

    Article  Google Scholar 

  22. Hill R, Lee EH, Tupper SJ (1947) The theory of wedge indentation of ductile materials. Proc R Soc Lond A 188:273–289

    Article  Google Scholar 

  23. Mulhearn TO (1959) The deformation of metals by vickers-type pyramidal indenters. J Mech Phys Sol 7:85–88

    Article  Google Scholar 

  24. Inkson BJ, Steer T, Mobus G et al (2001) Subsurface nanoindentation deformation of Cu–Al multilayers mapped in 3D by focused ion beam microscopy. J Microscopy 201:256–269

    Article  Google Scholar 

  25. Tsui TY, Vlassak J, Nix WD (1999) Indentation plastic displacement field: part I. The case of soft films on hard substrates. J Mater Res 14:2196–2203

    Article  Google Scholar 

  26. Tsui TY, Vlassak J, Nix WD (1999) Indentation plastic displacement field: part II. The case of hard films on soft substrates. J Mater Res 14:2204–2209

    Article  Google Scholar 

  27. Kiener D, Pippan R, Motz C et al (2006) Microstructural evolution of the deformed volume beneath microindents in tungsten and copper. Acta Mater 54:2801–2811

    Article  Google Scholar 

  28. Zaafarani N, Raabe D, Singh RN et al (2006) Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater 54:1863–1876

    Article  Google Scholar 

  29. Viswanathan GB, Lee E, Maher DM et al (2005) Direct observations and analyses of dislocation substructures in the α phase of an α/β Ti-alloy formed by nanoindentation. Acta Mater 53:5101–5115

    Article  Google Scholar 

  30. Lloyd SJ, Castellero A, Giuliani F et al (2005) Observations of nanoindents via cross-sectional transmission electron microscopy: a survey of deformation mechanisms. Proc Roayal Soc Math Phys Eng Sci 461:2521–2543

    Article  Google Scholar 

  31. Fleck NA, Muller GM, Ashby MF et al (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mat 42:475–487

    Article  Google Scholar 

  32. Tamura N, MacDowell AA, Spolenak BC et al (2003) Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. J Synchrotron Rad 10:137–143

    Article  Google Scholar 

  33. Budiman AS, Tamura N, Valek BC et al (2006) Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron X-Ray microdiffraction. Appl Phys Lett 88:233515

    Article  Google Scholar 

  34. Valek BC (2003) X-ray microdiffraction studies of mechanical behavior and electromigration in thin film structures. Dissertation, Stanford University

    Google Scholar 

  35. Yang W, Larson BC, Pharr GM et al (2004) Deformation microstructure under microindents in single-crystal Cu using three-dimensional x-ray structural microscopy. J Mater Res 19:66–72

    Article  Google Scholar 

  36. Yang W, Larson BC, Pharr M et al (2003) Deformation microstructure under nanoindentations in Cu using 3D X-ray structural microscopy. Mat Res Soc Symp Proc 750:Y8.26

    Google Scholar 

  37. Yang W, Larson BC, Pharr M et al (2003) X-ray Microbeam Investigation of Deformation Microstructure in Microindented Cu. Mat Res Soc Symp Proc 779:W5.34

    Google Scholar 

  38. Yang W, Larson BC, Tischler JZ et al (2004) Differential-aperture X-ray structural microscopy: a submicron-resolution three-dimensional probe of local microstructure and strain. Micron 35:431–439

    Article  Google Scholar 

  39. Barabash R, Ice GE, Larson BC et al (2001) White microbeam diffraction from distorted crystals. Appl Phys Lett 79:749–751

    Article  Google Scholar 

  40. Barabash RI, Ice GE, Larson BC et al (2002) Application of white X-ray microbeams for the analysis of dislocation structures. Rev Sci Instr 73:1652–1654

    Article  Google Scholar 

  41. Budiman AS, Han SM, Greer JR et al (2007) A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mat 56:602–608

    Article  Google Scholar 

  42. Cahn RW (1949) Recrystallization of single crystals after plastic bending. J Inst Met 86:121

    Google Scholar 

  43. Nye JF (1953) Some geometrical relations in dislocated crystals. Acta Metall 1:153–162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arief Suriadi Budiman .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Budiman, A.S. (2015). Indentation Size Effects in Single Crystal Cu as Revealed by Synchrotron X-ray Microdiffraction. In: Probing Crystal Plasticity at the Nanoscales. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-335-4_6

Download citation

Publish with us

Policies and ethics