Skip to main content

Application of Graphene Within Optoelectronic Devices and Transistors

  • Chapter
  • First Online:
Applied Spectroscopy and the Science of Nanomaterials

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 2))

Abstract

Scientists are always yearning for new and exciting ways to unlock graphene’s true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to ‘trap’ light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene’s nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191

    Article  Google Scholar 

  2. Meyer JC (2007) The structure of suspended graphene sheets. Nature 446:60–63

    Article  Google Scholar 

  3. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  4. Geim AK (2012) Graphene prehistory. Phys Scr T146:014003

    Article  Google Scholar 

  5. Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10:20–27

    Article  Google Scholar 

  6. Novoselov KS et al (2005) Two-dimensional atomic crystals. PNAS 102:10451–10453

    Article  Google Scholar 

  7. Savage N (2012) Materials science: super carbon. Nature 483:S30–S31

    Article  Google Scholar 

  8. Wallace PR (1947) The band theory of graphite. Phys Rev 71:622–634

    Article  Google Scholar 

  9. O’Hare A, Kusmartsev FV, Kugel KI (2012) A stable flat form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors. Nano Lett 12:1045–1052

    Article  Google Scholar 

  10. Novoselov KS et al (2004) Electr Field Eff At Thin Carbon Films Sci 306:666–669

    Google Scholar 

  11. Novoselov KS (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200

    Article  Google Scholar 

  12. Iyechika Y (2010) Application of graphene to high-speed transistors: expectations and challenge. Sci Techno Trends—Q Rev 37:3776–3792

    Google Scholar 

  13. Hlawacek G, Beilstein J et al (2012) Imaging ultra thin layers with helium ion microscopy: utilizing the channeling contrast mechanism. Nanotechnology 3:507–512

    Google Scholar 

  14. Robinson JA et al (2009) Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale. Nano Lett 9:2873–2876

    Article  Google Scholar 

  15. Gouider Trabelsi AB, Ouerghi A, Kusmartseva OE, Kusmartsev FV, Oueslati M (2013) Raman spectroscopy of four epitaxial graphene layers: macro-island grown on 4H-SiC0001 substrate and an associated strain distribution. Thin Solid Films 539:377–383

    Article  Google Scholar 

  16. Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnol 3:210–215

    Article  Google Scholar 

  17. Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol 5:574–578

    Article  Google Scholar 

  18. Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnol 3:206–209

    Article  Google Scholar 

  19. Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  Google Scholar 

  20. Morozov SV et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602

    Article  Google Scholar 

  21. Lin YM, Farmer DB, Jenkins KA et al (2011) Enhanced performance in epitaxial graphene FETs with optimized channel morphology. IEEE Electron Device Lett 32:1343–1345

    Article  Google Scholar 

  22. He QY, Wu SX, Yin ZY, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3:1764–1772

    Article  Google Scholar 

  23. He QY et al (2011) Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5:082117

    Google Scholar 

  24. Neto AHC, Novoselov KS (2011) New directions in science and technology: two-dimensional crystals. Rep Prog Phys 74:082501

    Article  Google Scholar 

  25. Pumarol ME et al (2012) Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nano-structures. Nano Lett 12:2906–2911

    Article  Google Scholar 

  26. Prasher R (2010) Graphene spreads the heat. Science 328:185–186

    Article  Google Scholar 

  27. Seol JH et al (2010) Science 328:213–216

    Article  Google Scholar 

  28. Chen S (2012) Thermal conductivity of isotopically modified graphene. Nature Mater 11:203–207

    Article  Google Scholar 

  29. Rafiee J (2012) Wetting transparency of graphene. Nature Mater 11:217–222

    Article  Google Scholar 

  30. Engel M et al (2012) Light matter interaction in a micro-cavity controlled graphene transistor room temperature transistor based on a single carbon nanotube. Nature Commun 3:906–911

    Article  Google Scholar 

  31. Schwierz F (2010) Graphene transistors. Nature Technol 5:487–496

    Google Scholar 

  32. Kusmartsev FV, Tsvelik AM (1985) Semi-metallic properties of a hetero-junction. JETP Lett 42:257–260

    Google Scholar 

  33. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622

    Article  Google Scholar 

  34. Sarma SD, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83:407–470

    Article  Google Scholar 

  35. Zhou YB, Wu HC, Yu DP, Liao ZM (2013) Magneto-resistance in graphene under quantum limit regime. Appl Phys Lett 102:093116

    Article  Google Scholar 

  36. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nature Nanotechnol 3:491–495

    Article  Google Scholar 

  37. Koh YK, Bae MH, Cahill DG, Pop E (2010) Heat conduction across monolayer and few-layer graphenes. Nano Lett 10:4363–4368

    Article  Google Scholar 

  38. Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nature Nanotech. 2:605–615

    Article  Google Scholar 

  39. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694

    Article  Google Scholar 

  40. Avouris P (2010) Graphene photonics and optoelectronics. Nano Lett 10:4285–4294

    Article  Google Scholar 

  41. Saleh BEA, Teich MC (2007) Fundamentals of photonics, 2nd edn. Wiley Series in Pure and Applied Optics. Wiley, USA

    Google Scholar 

  42. Kasap SO (2001) Optoelectronics and photonics: principles and practices, 1st edn. Prentice Hall, New Jersey

    Google Scholar 

  43. Koppens FHL, Chang DE, Garca de Aba jo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377

    Article  Google Scholar 

  44. Britnell L et al (2013) Strong light-matter interactions in heterostructures of atomically thin films. Sci Comm 340:1311

    Google Scholar 

  45. Rosencher E (2002) Optoelectronics, Cambridge University Press

    Google Scholar 

  46. Rudden MN, Wilson J (1993) Element of solid state physics. Wiley, New York (Chapter 4–6)

    Google Scholar 

  47. Irwin JD, Kerns DV (1995) Introduction to electrical engineering. Prentice Hall, New Jersey Chapter 8–9

    Google Scholar 

  48. Turton R (2000) The physics of solids. Oxford University Press, New York Chapter 4–6

    Google Scholar 

  49. Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  50. Fan X, Shen Z, Liu AQ, Kuo JL (2012) Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4:2157–2165

    Article  Google Scholar 

  51. Shinde PP, Kumar Y (2011) Direct band gap opening in graphene by BN doping: Ab initio calculations. Phys Rev B 84:125401

    Article  Google Scholar 

  52. Coletti C, Riedl C, Lee DS, Krauss B, Patthey L, von Klitzing K, Smet JH, Starke U (2010) Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys Rev B 81:235401

    Article  Google Scholar 

  53. Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep Prog Phys 75:062501

    Article  Google Scholar 

  54. Katsnelson MI, Novoselov KS, Geim AK (2006) Chiral tunneling and the klein paradox in graphene. Nature Phys 2:620–625

    Article  Google Scholar 

  55. Dean CR et al (2011) Multicomponent fractional quantum Hall effect in graphene. Nature Phys 7:693–696

    Article  Google Scholar 

  56. Novoselov KS et al (2007) Room-temperature quantum hall effect in graphene. Science 315:1379

    Article  Google Scholar 

  57. Calogeracos A (2006) Paradox in a pencil. Nature Phys 2:579–580

    Article  Google Scholar 

  58. Zalipaev VV, Maksimov DN, Linton CM, Kusmartsev FV (2013) Spectrum of localized states in graphene quantum dots and wires. Phys Lett A 377:216–221

    Article  Google Scholar 

  59. Hartmann RR, Robinson NJ, Portnoi ME (2010) Smooth electron waveguides in graphene. Phys Rev B 81:245431

    Article  Google Scholar 

  60. Williams JR, Low T, Lundstrom MS, Marcus CM (2011) Gate-controlled guiding of electrons in graphene. Nat Nanotech 6:222–225

    Article  Google Scholar 

  61. Wu Q, Turpin JP, Werner DH (2012) Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci Appl 1:e38. doi:10.1038/lsa.2012.38

  62. Downing CA, Stone DA, Portnoi ME (2011) Zero-energy states in graphene quantum dots and rings. Phys Rev B 84:155437

    Article  Google Scholar 

  63. Stone DA, Downing CA, Portnoi ME (2012) Searching for confined modes in graphene channels: the variable phase method. Phys. Rev. B 86:075464

    Article  Google Scholar 

  64. Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Engs 37:10–21

    Google Scholar 

  65. Gan X et al (2013) High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett 13:691–696

    Article  Google Scholar 

  66. Avouris P, Xia FN (2012) Graphene applications in electronics and photonics. Mater Res Soc 37:1225–1234

    Article  Google Scholar 

  67. Avouris P, Freitag M (2014) Graphene photonics, plasmonics and optoelectronics. IEEE J Sel Top Quantum Electron.  doi:10.1109/JSTQE.2013.2272315

    Google Scholar 

  68. Butcher PN, Cotter D (1991) The elements of nonlinear optics. Cambridge University Press, Cambridge

    Google Scholar 

  69. Lu L, Cheong LL, Smith HI, Johnson SG, Joannopoulos JD, Soljacic M (2012) Three-dimensional photonic crystals by large-area membrane stacking. Optics Lett 37:47264728

    Google Scholar 

  70. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  71. Moktadir Z, Charlton M, Pollard M, Mizuta H, Rutt H (2011) Tunable transmission in a graphene photonic crystal in mid-infrared. In: Graphene 2011 conference, Bilbao, Spain, 11–14 Apr 2011

    Google Scholar 

  72. Majumdar A, Kim J, Vuckovic J, Wang F (2014) Graphene for tunable nanophotonic resonators. IEEE Sel Top Quantum Electron 20:4600204

    Google Scholar 

  73. Mohan Kumar D (2003) Optoelectronic devices and their applications. Electronics for You, Oct 2003

    Google Scholar 

  74. Furchi M et al (2012) Microcavity-integrated graphene photodetector. Nano Lett 12:2773–2777

    Article  Google Scholar 

  75. Xia F, Mueller T, Lin YM, Garcia AV, Avouris P (2009) Ultrafast graphene photodetector. Nature Nanotech 4:839–843

    Article  Google Scholar 

  76. Mueller T, Xia F, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photonics 4:297–301

    Article  Google Scholar 

  77. Echtermeyer TJ et al (2011) Strong plasmonic enhancement of photovoltage in graphene. Nature Commun 2:458. doi:10.1038/ncomms1464

  78. Nicoletti O et al (2013) Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502:80–84

    Article  Google Scholar 

  79. Xing F et al (2012) Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor. Sci Rep 2:908. doi:10.1038/srep00908

  80. Amin M, Farhat M, Bagci H (2013) A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci Rep 3:2105. doi:10.1038/srep02105

    Google Scholar 

  81. Gosciniak J, Tan DTH (2013) Theoretical investigation of graphene-based photonic modulators. Sci Rep 3:1897. doi:10.1038/srep01897

  82. Liu M et al (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Article  Google Scholar 

  83. Zhang FM, He Y, Chen X (2009) Guided modes in graphene waveguides. Appl Phys Lett 94(21):212105

    Article  Google Scholar 

  84. Kim JT, Choi SY (2011) Graphene-based plasmonic waveguides for photonic integrated circuits. Optic Express 19:24557–24562

    Article  Google Scholar 

  85. Wang X, Cheng Z, Xu K, Tsang HK, Xu JB (2013) High-responsivity graphene/siliconheterostructure waveguide photodetectors. Nat Photonics 7:888–891

    Article  Google Scholar 

  86. Lim GK et al (2011) Giant broadband nonlinear optical absorption reponse in dispersed graphene single sheets. Nat Photonics 5:554–560

    Article  Google Scholar 

  87. Bao Q et al (2011) Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 4(3):297–307

    Article  Google Scholar 

  88. Hendry E, Hale P, Moger J, Savchenko A, Mikhailov S (2010) Coherent nonlinear optical response of graphene. Phys Rev Lett 105:97401

    Article  Google Scholar 

  89. Wang J, Hernandez Y, Lotya M, Coleman JN, Blau WJ (2009) Broadband nonlinear optical response of graphene dispersions. Adv Mater 21:2430–2435

    Article  Google Scholar 

  90. Tutt LW, Kost A (1992) Optical limiting performance of C60 and C70 solutions. Nature 356:225–226

    Article  Google Scholar 

  91. Park J, Nam S, Lee M, Lieber CM (2011) Synthesis of monolithic graphene-graphite integrated electronics. Nat Mater 98:082117

    Google Scholar 

  92. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultra-smooth graphene nanoribbon semiconductors. Science 319:1229–1232

    Article  Google Scholar 

  93. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  Google Scholar 

  94. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449

    Article  Google Scholar 

  95. Zhu HW, Xu CL, Wu DH, Wei BQ, Va jtai R, Ajayan PM (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296:884–886

    Article  Google Scholar 

  96. McCann E, Fal’ko VI (2004) Symmetry of boundary conditions of the Dirac equation for electrons in carbon nanotubes. J Phys Cond Matter 16:2371–2379

    Article  Google Scholar 

  97. Kreupl F (2012) Carbon nanotubes finally deliver. Nature 484:321–322

    Article  Google Scholar 

  98. Franklin AD et al (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12:758–762

    Article  Google Scholar 

  99. Jang S et al (2010) Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 21:425201

    Article  Google Scholar 

  100. Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HSP, Mitra S (2013) Carbon nanotube computer. Nature 501:526

    Article  Google Scholar 

  101. Franklin AD (2013) Electronics: the road to carbon nanotube transistors. Nature 498:443

    Article  Google Scholar 

  102. Javey A, Guo J, Wang Q, Lundstorm M, Dai H (2003) Ballistic carbon nanotube transistors. Nature 424:654

    Article  Google Scholar 

  103. Britnell L et al (2012) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–950

    Article  Google Scholar 

  104. Ponomarenko LA et al (2011) Tunable metal-insulator transition in double-layer graphene heterostructures. Nature Phys. 7:958–961

    Article  Google Scholar 

  105. Yang X et al. (2010) Graphene tunnelling FET and its applications in low power circuit design. In: GLSVLSI10 proceedings of the 20th symposium on great lakes symposium on VLSI, pp 263–268

    Google Scholar 

  106. Michetti P, Cheli M, Iannaccone G (2010) Model of tunneling transistors based on graphene on SiC. Appl Phys Lett 96:133508

    Article  Google Scholar 

  107. Zhao P, Chauhan J, Guo J (2009) Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett 9:684–688

    Article  Google Scholar 

  108. Zhang Q, Fang T, Xing H, Seabaugh A, Jena D (2008) Graphene nanoribbon tunnel transistors. IEEE Electron Dev Lett 29:1344–1346

    Article  Google Scholar 

  109. Ionescu MA, Reil H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337

    Article  Google Scholar 

  110. Nandkishore R, Levitov L (2011) Common-path interference and oscillatory zener tunneling in bilayer graphene p-n junctions. PNAS 108:14021–14025

    Article  Google Scholar 

  111. Georgiou T et al (2013) Vertical field effect transistor based on graphene-WS2 Heterostructures for flexible and transparent electronics. Nature Nanotechnol 8:100–103

    Article  Google Scholar 

  112. Britnell L et al (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nature Comm 4:1794

    Article  Google Scholar 

  113. Nguyen VH et al (2012) Bandgap nanoengineering of graphene tunnel diodes and tunnel transistors to control the negative differential resistance. J Comput Electron 12:85–93

    Article  Google Scholar 

  114. Malec CM, Davidovic D (2011) Transport in graphene tunnel junctions. J Appl Phys 109:064507

    Article  Google Scholar 

  115. Cobas E, Friedman AL, Erve OMJ, Robinson JT, Jonker BT (2012) Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano Lett 12:3000–3004

    Article  Google Scholar 

  116. Wu Y et al (2011) High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472:74–78

    Article  Google Scholar 

  117. Schall D, Otto M, Neumaier D, Kurz H (2013) Integrated ring oscillators based on high- performance graphene inverters. Sci Rep 3:2592

    Article  Google Scholar 

  118. Zheng J et al (2013) Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation. Sci Rep 3:1314

    Google Scholar 

  119. Lin YM et al (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662

    Article  Google Scholar 

  120. Cheng R et al (2012) High frequency self-aligned graphene transistors with transferred gate stack. PNAS 109:11588–11592

    Article  Google Scholar 

  121. Yung KC, Wu WM, Pierpoint MP, Kusmartsev FV (2013) Introduction to graphene electronics—a new era of digital transistors and devices. Cont Phys 54:233–251. doi:10.1080/00107514.2013.833701

  122. Pototsky A, Marchesoni F, Kusmartsev FV, Hanggi P, Savel’ev SE (2012) Relativistic Brownian motion on a graphene chip. Eur Phys J B 85:356

    Article  Google Scholar 

  123. Yang Y et al (2013) Coherent nonlocal transport in quantum wires with strongly coupled electrodes. Phys Rev B 87:045403

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Kusmartsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kusmartsev, F.V., Wu, W.M., Pierpoint, M.P., Yung, K.C. (2015). Application of Graphene Within Optoelectronic Devices and Transistors. In: Misra, P. (eds) Applied Spectroscopy and the Science of Nanomaterials. Progress in Optical Science and Photonics, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-287-242-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-242-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-241-8

  • Online ISBN: 978-981-287-242-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics