Skip to main content

Polymeric Supramolecular Hydrogels as Materials for Medicine

  • Chapter
  • First Online:
In-Situ Gelling Polymers

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

This chapter describes some recent research in the field of supramolecular polymeric hydrogels. Eight examples are discussed that represent a small view of the plethora of these advanced functional materials. The examples described herein exhibit tunable physicochemical properties that allow for adjustment towards targeted applications in the biomedical field, including protein immobilization, tissue engineering, drug delivery, and dermocosmetics. The highly adaptive supramolecular polymeric hydrogels are likely to have a bright future as materials for medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50(1), 27–46 (2000). doi:10.1016/S0939-6411(00)00090-4

    CAS  Google Scholar 

  2. Hennink, W., Van Nostrum, C.: Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 64(3), 223–236 (2012)

    Google Scholar 

  3. Hoare, T.R., Kohane, D.S.: Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)

    CAS  Google Scholar 

  4. Tabata, Y., Ikada, Y.: Synthesis of gelatin microspheres containing interferon. Pharm. Res. 6(5), 422–427 (1989)

    CAS  Google Scholar 

  5. Mather, B.D., Viswanathan, K., Miller, K.M., Long, T.E.: Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 31(5), 487–531 (2006). doi:10.1016/j.progpolymsci.2006.03.001

    CAS  Google Scholar 

  6. Nandivada, H., Jiang, X., Lahann, J.: Click chemistry: versatility and control in the hands of materials scientists. Adv. Mater. 19(17), 2197–2208 (2007). doi:10.1002/adma.200602739

    CAS  Google Scholar 

  7. Langer, R., Peppas, N.: Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2(4), 201–214 (1981)

    CAS  Google Scholar 

  8. Wichterle, O., Lim, D.: Hydrophilic gels for biological use. Nature 185(4706), 117–118 (1960)

    Google Scholar 

  9. Oelker, A.M., Morey, S.M., Griffith, L.G., Hammond, P.T.: Helix versus coil polypeptide macromers: gel networks with decoupled stiffness and permeability. Soft Matter 8(42), 10887–10895 (2012). doi:10.1039/C2SM26487K

    CAS  Google Scholar 

  10. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S.: Autonomic healing of polymer composites. Nature 409(6822), 794–797 (2001)

    CAS  Google Scholar 

  11. Maldonado-Codina, C., Efron, N.: Impact of manufacturing technology and material composition on the mechanical properties of hydrogel contact lenses. Ophthalmic Physiol. Opt. 24(6), 551–561 (2004). doi:10.1111/j.1475-1313.2004.00236.x

    Google Scholar 

  12. Sun, J.-Y., Zhao, X., Illeperuma, W.R.K., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z.: Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012). http://www.nature.com/nature/journal/v489/n7414/abs/nature11409.html#supplementary-information

  13. Yiu, C., Tay, F., King, N., Pashley, D., Sidhu, S., Neo, J., Toledano, M., Wong, S.: Interaction of glass-ionomer cements with moist dentin. J. Dent. Res. 83(4), 283–289 (2004)

    CAS  Google Scholar 

  14. Haraguchi, K., Takehisa, T., Fan, S.: Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35(27), 10162–10171 (2002). doi:10.1021/ma021301r

    CAS  Google Scholar 

  15. Goycoolea, F.M., Heras, A., Aranaz, I., Galed, G., Fernández-Valle, M.E., Argüelles-Monal, W.: Effect of chemical crosslinking on the swelling and shrinking properties of thermal and pH-responsive chitosan hydrogels. Macromol. Biosci. 3(10), 612–619 (2003). doi:10.1002/mabi.200300011

    CAS  Google Scholar 

  16. Appel, E.A., del Barrio, J., Loh, X.J., Scherman, O.A.: Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41(18), 6195–6214 (2012). doi:10.1039/C2CS35264H

    CAS  Google Scholar 

  17. Brochu, A.B.W., Craig, S.L., Reichert, W.M.: Self-healing biomaterials. J. Biomed. Mater. Res., Part A 96A(2), 492–506 (2011). doi:10.1002/jbm.a.32987

    CAS  Google Scholar 

  18. van Gemert, G.M.L., Peeters, J.W., Söntjens, S.H.M., Janssen, H.M., Bosman, A.W.: Self-healing supramolecular polymers in action. Macromol. Chem. Phys. 213(2), 234–242 (2012). doi:10.1002/macp.201100559

    Google Scholar 

  19. Phadke, A., Zhang, C., Arman, B., Hsu, C.-C., Mashelkar, R.A., Lele, A.K., Tauber, M.J., Arya, G., Varghese, S.: Rapid self-healing hydrogels. PNAS 109(12), 4383–4388 (2012)

    CAS  Google Scholar 

  20. Lemmers, M., Sprakel, J., Voets, I.K., van der Gucht, J., Cohen Stuart MA, : Multiresponsive reversible gels based on charge-driven assembly. Angew. Chem. Int. Ed. 49(4), 708–711 (2010). doi:10.1002/anie.200905515

    CAS  Google Scholar 

  21. Tokarev, I., Minko, S.: Stimuli-responsive hydrogel thin films. Soft Matter 5(3), 511–524 (2009)

    CAS  Google Scholar 

  22. Grassi, G., Farra, R., Caliceti, P., Guarnieri, G., Salmaso, S., Carenza, M., Grassi, M.: Temperature-sensitive hydrogels. Am. J. Drug Deliv. 3(4), 239–251 (2005)

    CAS  Google Scholar 

  23. Miyata, T., Asami, N., Uragami, T.: A reversibly antigen-responsive hydrogel. Nature 399(6738), 766–769 (1999). http://www.nature.com/nature/journal/v399/n6738/suppinfo/399766a0_S1.html

  24. Kuckling, D.: Responsive hydrogel layers—from synthesis to applications. Colloid Polym. Sci. 287(8), 881–891 (2009). doi:10.1007/s00396-009-2060-x

    CAS  Google Scholar 

  25. Alves, M.H., Jensen, B.E., Smith, A.A., Zelikin, A.N.: Poly (vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial. Macromol. Biosci. 11(10), 1293–1313 (2011)

    CAS  Google Scholar 

  26. Farris, S., Schaich, K.M., Liu, L., Piergiovanni, L., Yam, K.L.: Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci. Technol. 20(8), 316–332 (2009)

    CAS  Google Scholar 

  27. Geckil, H., Xu, F., Zhang, X., Moon, S., Demirci, U.: Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5(3), 469–484 (2010)

    CAS  Google Scholar 

  28. Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug. Deliv. Rev. (2012)

    Google Scholar 

  29. Kaneko, T., Yamaoka, K., Osada, Y., Gong, J.P.: Thermoresponsive shrinkage triggered by mesophase transition in liquid crystalline physical hydrogels. Macromolecules 37(14), 5385–5388 (2004)

    CAS  Google Scholar 

  30. Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64(Supplement), 18–23 (2012). doi:10.1016/j.addr.2012.09.010

    Google Scholar 

  31. Talei Franzesi, G., Ni, B., Ling, Y., Khademhosseini, A.: A controlled-release strategy for the generation of cross-linked hydrogel microstructures. J. Am. Chem. Soc. 128(47), 15064–15065 (2006). doi:10.1021/ja065867x

    Google Scholar 

  32. Kroll, E., Winnik, F.M., Ziolo, R.F.: In situ preparation of nanocrystalline γ-Fe2O3 in iron (II) cross-linked alginate gels. Chem. Mater. 8(8), 1594–1596 (1996)

    CAS  Google Scholar 

  33. Rossow, T., Hackelbusch, S., Van Assenbergh, P., Seiffert, S.: A modular construction kit for supramolecular polymer gels. Polym. Chem. 4(8), 2515–2527 (2013)

    CAS  Google Scholar 

  34. Krische, M., Lehn, J.-M.: The Utilization of Persistent H-Bonding Motifs in the Self-Assembly of Supramolecular Architectures. In: Fuiita, M. (ed.) Molecular Self-Assembly Organic Versus Inorganic Approaches. Structure and Bonding, vol. 96, pp. 3–29. Springer, Berlin Heidelberg (2000). doi:10.1007/3-540-46591-X_1

    Google Scholar 

  35. Steed, J.W., Atwood, J.L. The supramolecular chemistry of life. In: Supramolecular chemistry, pp. 49–104. Wiley (2009). doi:10.1002/9780470740880.ch2

  36. Piepenbrock, M.-O.M., Lloyd, G.O., Clarke, N., Steed, J.W.: Metal- and anion-binding supramolecular gels. Chem. Rev. 110(4), 1960–2004 (2009)

    Google Scholar 

  37. Schubert, U.S., Eschbaumer, C.: Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. Angew. Chem. Int. Ed. 41(16), 2892–2926 (2002). doi:10.1002/1521-3773(20020816)41:16<2892:AID-ANIE2892>3.0.CO;2-6

    CAS  Google Scholar 

  38. Berger, J., Reist, M., Mayer, J., Felt, O., Peppas, N., Gurny, R.: Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 57(1), 19–34 (2004)

    CAS  Google Scholar 

  39. Rastello De Boisseson, M., Leonard, M., Hubert, P., Marchal, P., Stequert, A., Castel, C., Favre, E., Dellacherie, E.: Physical alginate hydrogels based on hydrophobic or dual hydrophobic/ionic interactions: Bead formation, structure, and stability. J. Colloid Interface Sci. 273(1), 131–139 (2004)

    CAS  Google Scholar 

  40. Francis Suh, J.-K., Matthew, H.W.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24), 2589–2598 (2000)

    CAS  Google Scholar 

  41. Temenoff, J.S., Mikos, A.G.: Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5), 431–440 (2000)

    CAS  Google Scholar 

  42. Haag, R.: Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew. Chem. Int. Ed. 43(3), 278–282 (2004)

    CAS  Google Scholar 

  43. LaVan, D.A., McGuire, T., Langer, R.: Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21(10), 1184–1191 (2003)

    CAS  Google Scholar 

  44. Giller, K.E., Witter, E., Mcgrath, S.P.: Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem. 30(10), 1389–1414 (1998)

    CAS  Google Scholar 

  45. Stohs, S., Bagchi, D.: Oxidative mechanisms in the toxicity of metal ions. Free Rad. Biol. Med. 18(2), 321–336 (1995)

    CAS  Google Scholar 

  46. Pourjavadi, A., Amini-Fazl, M.S.: Optimized synthesis of carrageenan-graft-poly (sodium acrylate) superabsorbent hydrogel using the Taguchi method and investigation of its metal ion absorption. Polym. Int. 56(2), 283–289 (2007)

    CAS  Google Scholar 

  47. Hirst, A.R., Escuder, B., Miravet, J.F., Smith, D.K.: High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed. 47(42), 8002–8018 (2008)

    CAS  Google Scholar 

  48. Weng, W., Li, Z., Jamieson, A.M., Rowan, S.J.: Control of gel morphology and properties of a class of metallo-supramolecular polymers by good/poor solvent environments. Macromolecules 42(1), 236–246 (2008)

    Google Scholar 

  49. Sackmann, E., Tanaka, M.: Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 18(2), 58–64 (2000)

    CAS  Google Scholar 

  50. Zhang, J., Xu, S., Kumacheva, E.: Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J. Am. Chem. Soc. 126(25), 7908–7914 (2004)

    CAS  Google Scholar 

  51. Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4(9), 3167–3192 (2011)

    CAS  Google Scholar 

  52. Choudhury, N.A., Ma, J., Sahai, Y., Buchheit, R.G.: High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells. J. Power Sources 196(14), 5817–5822 (2011)

    CAS  Google Scholar 

  53. George, M., Abraham, T.E.: Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J. Controlled Release 114(1), 1–14 (2006)

    CAS  Google Scholar 

  54. Gombotz, W.R., Wee, S.: Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31(3), 267–285 (1998)

    CAS  Google Scholar 

  55. Smidsrød, O.: Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71–78 (1990)

    Google Scholar 

  56. Djagny, K.B., Wang, Z., Xu, S.: Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit. Rev. Food Sci. Nutr. 41(6), 481–492 (2001)

    CAS  Google Scholar 

  57. Ishida, K., Kuroda, R., Miwa, M., Tabata, Y., Hokugo, A., Kawamoto, T., Sasaki, K., Doita, M., Kurosaka, M.: The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng. 13(5), 1103–1112 (2007)

    CAS  Google Scholar 

  58. Tabata, Y., Ikada, Y.: Protein release from gelatin matrices. Adv. Drug Deliv. Rev. 31(3), 287–301 (1998)

    CAS  Google Scholar 

  59. Boucard, N., Viton, C., Agay, D., Mari, E., Roger, T., Chancerelle, Y., Domard, A.: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28(24), 3478–3488 (2007)

    CAS  Google Scholar 

  60. Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1880 (2001)

    CAS  Google Scholar 

  61. Ravi Kumar, M.N.: A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000)

    Google Scholar 

  62. Dornish, M., Kaplan, D., Skaugrud, Ø.: Standards and guidelines for biopolymers in tissue-engineered medical products. Ann. N. Y. Acad. Sci. 944(1), 388–397 (2001)

    CAS  Google Scholar 

  63. Lewen, G., Lindsay, S., Tao, N., Weidlich, T., Graham, R., Rupprecht, A.: A mechanism for the large anisotropic swelling of DNA films. Biopolymers 25(5), 765–770 (1986)

    CAS  Google Scholar 

  64. Patel, P., Stripp, A., Fry, J.: Whipping test for the determination of foaming capacity of protein: a collaborative study. Int. J. Food Sci. Technol. 23(1), 57–63 (1988)

    CAS  Google Scholar 

  65. Brandl, F., Sommer, F., Goepferich, A.: Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28(2), 134–146 (2007)

    CAS  Google Scholar 

  66. Gayet, J.-C., Fortier, G.: High water content BSA-PEG hydrogel for controlled release device: evaluation of the drug release properties. J. Controlled Release 38(2), 177–184 (1996)

    CAS  Google Scholar 

  67. Liu Tsang, V., Bhatia, S.N.: Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56(11), 1635–1647 (2004)

    CAS  Google Scholar 

  68. Garrett, Q., Chatelier, R.C., Griesser, H.J., Milthorpe, B.K.: Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly (HEMA) hydrogels. Biomaterials 19(23), 2175–2186 (1998)

    CAS  Google Scholar 

  69. Montheard, J.-P., Chatzopoulos, M., Chappard, D.: 2-Hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. J. Macromol. Sci. Part C Polymer Rev. 32(1), 1–34 (1992)

    Google Scholar 

  70. Xinming, L., Yingde, C., Lloyd, A.W., Mikhalovsky, S.V., Sandeman, S.R., Howel, C.A., Liewen, L.: Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review. Cont. Lens Anterior Eye 31(2), 57–64 (2008)

    Google Scholar 

  71. Rossow, T., Heyman, J.A., Ehrlicher, A.J., Langhoff, A., Weitz, D.A., Haag, R., Seiffert, S.: Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics. J. Am. Chem. Soc. 134(10), 4983–4989 (2012)

    CAS  Google Scholar 

  72. Sisson, A.L., Haag, R.: Polyglycerol nanogels: highly functional scaffolds for biomedical applications. Soft Matter 6(20), 4968–4975 (2010)

    CAS  Google Scholar 

  73. Sisson, A.L., Steinhilber, D., Rossow, T., Welker, P., Licha, K., Haag, R.: Biocompatible functionalized polyglycerol microgels with cell penetrating properties. Angew. Chem. Int. Ed. 48(41), 7540–7545 (2009)

    CAS  Google Scholar 

  74. Chen, G., Jiang, M.: Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 40(5), 2254–2266 (2011)

    CAS  Google Scholar 

  75. Guo, M., Jiang, M., Pispas, S., Yu, W., Zhou, C.: Supramolecular hydrogels made of end-functionalized low-molecular-weight PEG and α-cyclodextrin and their hybridization with SiO2 nanoparticles through host–guest interaction. Macromolecules 41(24), 9744–9749 (2008)

    CAS  Google Scholar 

  76. Wang, C., Kopecek, J., Stewart, R.J.: Hybrid hydrogels cross-linked by genetically engineered coiled-coil block proteins. Biomacromolecules 2(3), 912–920 (2001)

    CAS  Google Scholar 

  77. Steed, J.W., Atwood, J.L.: Supramolecular chemistry. Wiley, Hoboken (2009)

    Google Scholar 

  78. Chang, C., Zhang, L.: Cellulose-based hydrogels: present status and application prospects. Carbohydr. Polym. 84(1), 40–53 (2011)

    CAS  Google Scholar 

  79. Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44(22), 3358–3393 (2005)

    CAS  Google Scholar 

  80. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

    CAS  Google Scholar 

  81. Van Vlierberghe, S., Dubruel, P., Schacht, E.: Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5), 1387–1408 (2011)

    Google Scholar 

  82. Fatin-Rouge, N., Milon, A., Buffle, J., Goulet, R.R., Tessier, A.: Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions. J. Phys. Chem. B 107(44), 12126–12137 (2003)

    CAS  Google Scholar 

  83. Bock, L.: Water-soluble cellulose ethers. Ind. Eng. Chem. 29(9), 985–987 (1937)

    CAS  Google Scholar 

  84. Nishio, Y., Haratani, T., Takahashi, T., Manley, R.S.J.: Cellulose/poly (vinyl alcohol) blends: an estimation of thermodynamic polymer–polymer interaction by melting-point-depression analysis. Macromolecules 22(5), 2547–2549 (1989)

    CAS  Google Scholar 

  85. Nishio, Y., Manley, R.J.: Cellulose-poly (vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride. Macromolecules 21(5), 1270–1277 (1988)

    Google Scholar 

  86. Dave, V., Tamagno, M., Focher, B., Marsano, E.: Hyaluronic acid-(hydroxypropyl) cellulose blends: a solution and solid state study. Macromolecules 28(10), 3531–3539 (1995)

    CAS  Google Scholar 

  87. Gupta, D., Tator, C.H., Shoichet, M.S.: Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11), 2370–2379 (2006)

    CAS  Google Scholar 

  88. Tuan, T.-L., Nichter, L.S.: The molecular basis of keloid and hypertrophic scar formation. Mol. Med. Today 4(1), 19–24 (1998)

    CAS  Google Scholar 

  89. Caicco, M.J., Zahir, T., Mothe, A.J., Ballios, B.G., Kihm, A.J., Tator, C.H., Shoichet, M.S.: Characterization of hyaluronan–methylcellulose hydrogels for cell delivery to the injured spinal cord. J. Biomed. Mater. Res. A 101A(5), 1472–1477 (2013). doi:10.1002/jbm.a.34454

    CAS  Google Scholar 

  90. Wang, Y., Lapitsky, Y., Kang, C.E., Shoichet, M.S.: Accelerated release of a sparingly soluble drug from an injectable hyaluronan–methylcellulose hydrogel. J. Controlled Release 140(3), 218–223 (2009)

    CAS  Google Scholar 

  91. Chang, C., Lue, A., Zhang, L.: Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol. Chem. Phys. 209(12), 1266–1273 (2008). doi:10.1002/macp.200800161

    CAS  Google Scholar 

  92. Dankers, P.Y.W., Hermans, T.M., Baughman, T.W., Kamikawa, Y., Kieltyka, R.E., Bastings, M.M.C., Janssen, H.M., Sommerdijk, N.A.J.M., Larsen, A., van Luyn, M.J.A., Bosman, A.W., Popa, E.R., Fytas, G., Meijer, E.W.: Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv. Mater. 24(20), 2703–2709 (2012). doi:10.1002/adma.201104072

    CAS  Google Scholar 

  93. Dankers, P.Y.W., van Luyn, M.J.A., Huizinga-van der Vlag, A., van Gemert, G.M.L., Petersen, A.H., Meijer, E.W., Janssen, H.M., Bosman, A.W., Popa, E.R.: Development and in vivo characterization of supramolecular hydrogels for intrarenal drug delivery. Biomaterials 33(20), 5144–5155 (2012). doi:10.1016/j.biomaterials.2012.03.052

    CAS  Google Scholar 

  94. Schubert, U.S., Winter, A., Newkome, G.R.: Chemistry and properties of terpyridine transition metal ion complexes. In: Terpyridine-based Materials, pp 65-127. Wiley-VCH Verlag GmbH & Co. KGaA (2011). doi:10.1002/9783527639625.ch3

  95. Weng, W., Beck, J.B., Jamieson, A.M., Rowan, S.J.: Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J. Am. Chem. Soc. 128(35), 11663–11672 (2006)

    CAS  Google Scholar 

  96. Zhang, J., Su, C.-Y.: Metal-organic gels: from discrete metallogelators to coordination polymers. Coord. Chem. Rev. 257(7), 1373–1408 (2013)

    CAS  Google Scholar 

  97. Fiore, G.L., Klinkenberg, J.L., Pfister, A., Fraser, C.L.: Iron tris (bipyridine) PEG hydrogels with covalent and metal coordinate cross-links. Biomacromolecules 10(1), 128–133 (2008)

    Google Scholar 

  98. Rossow, T., Bayer, S., Albrecht, R., Tzschucke, C.C., Seiffert, S.: Supramolecular hydrogel capsules based on PEG: a step toward degradable biomaterials with rational design. Macromol. Rapid Commun. (2013)

    Google Scholar 

  99. Fullenkamp, D.E., Rivera, J.G., Gong, Y.-k., Lau, K., He, L., Varshney, R., Messersmith, P.B.: Mussel-inspired silver-releasing antibacterial hydrogels. Biomaterials 33(15), 3783–3791 (2012)

    CAS  Google Scholar 

  100. Guvendiren, M., Messersmith, P.B., Shull, K.R.: Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9(1), 122–128 (2007)

    Google Scholar 

  101. Thompson, K.H., Orvig, C.: Boon and bane of metal ions in medicine. Science 300(5621), 936–939 (2003)

    CAS  Google Scholar 

  102. Augst, A.D., Kong, H.J., Mooney, D.J.: Alginate hydrogels as biomaterials. Macromol. Biosci. 6(8), 623–633 (2006)

    CAS  Google Scholar 

  103. Gibbs, B.F., Kermasha, S., Alli, I., Mulligan, C.N.: Encapsulation in the food industry: a review. Int. J. Food Sci. Nutr. 50(3), 213–224 (1999)

    CAS  Google Scholar 

  104. Glicksman, M.: Utilization of natural polysaccharide gums in the food industry. Adv. Food Res. 11, 109–200 (1962)

    CAS  Google Scholar 

  105. Glicksman, M.: Utilization of seaweed hydrocolloids in the food industry. Hydrobiologia 151–152(1), 31–47 (1987). doi:10.1007/BF00046103

    Google Scholar 

  106. Matthew, I.R., Browne, R.M., Frame, J.W., Millar, B.G.: Subperiosteal behaviour of alginate and cellulose wound dressing materials. Biomaterials 16(4), 275–278 (1995)

    CAS  Google Scholar 

  107. Ashley, M., McCullagh, A., Sweet, C.: Making a good impression: (a ‘how to’ paper on dental alginate). Dent Update 32(3), 169 (2005)

    Google Scholar 

  108. Bratthall, G., Lindberg, P., Havemose-Poulsen, A., Holmstrup, P., Bay, L., Söderholm, G., Norderyd, O., Andersson, B., Rickardsson, B., Hallström, H., Kullendorff, B., Sköld Bell, H.: Comparison of ready-to-use EMDOGAIN®-gel and EMDOGAIN® in patients with chronic adult periodontitis. J. Clin. Periodontol. 28(10), 923–929 (2001). doi:10.1034/j.1600-051x.2001.028010923.x

    CAS  Google Scholar 

  109. Tønnesen, H.H., Karlsen, J.: Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 28(6), 621–630 (2002)

    Google Scholar 

  110. Rowley, J.A., Madlambayan, G., Mooney, D.J.: Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1), 45–53 (1999)

    CAS  Google Scholar 

  111. Donati, I., Cesàro, A., Paoletti, S.: Specific interactions versus counterion condensation. 1. Nongelling ions/polyuronate systems. Biomacromolecules 7(1), 281–287 (2006)

    CAS  Google Scholar 

  112. Topuz, F., Henke, A., Richtering, W., Groll, J.: Magnesium ions and alginate do form hydrogels: a rheological study. Soft Matter 8(18), 4877–4881 (2012)

    CAS  Google Scholar 

  113. Milas, M., Rinaudo, M.: The gellan sol–gel transition. Carbohydr. Polym. 30(2), 177–184 (1996)

    CAS  Google Scholar 

  114. Watase, M., Nishinari, K.: Effect of alkali metal ions on the viscoelasticity of concentrated kappa-carrageenan and agarose gels. Rheol. Acta 21(3), 318–324 (1982)

    CAS  Google Scholar 

  115. Dalsin, J.L., Hu, B.-H., Lee, B.P., Messersmith, P.B.: Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J. Am. Chem. Soc. 125(14), 4253–4258 (2003)

    CAS  Google Scholar 

  116. Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007)

    CAS  Google Scholar 

  117. Lee, H., Scherer, N.F., Messersmith, P.B.: Single-molecule mechanics of mussel adhesion. PNAS 103(35), 12999–13003 (2006)

    CAS  Google Scholar 

  118. Lin, Q., Gourdon, D., Sun, C., Holten-Andersen, N., Anderson, T.H., Waite, J.H., Israelachvili, J.N.: Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. PNAS 104(10), 3782–3786 (2007)

    CAS  Google Scholar 

  119. Taylor, S.W., Luther III, G.W., Waite, J.H.: Polarographic and spectrophotometric investigation of iron (III) complexation to 3,4-dihydroxyphenylalanine-containing peptides and proteins from Mytilus edulis. Inorg. Chem. 33(25), 5819–5824 (1994)

    CAS  Google Scholar 

  120. Harrington, M.J., Masic, A., Holten-Andersen, N., Waite, J.H., Fratzl, P.: Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975), 216–220 (2010)

    CAS  Google Scholar 

  121. Holten-Andersen, N., Harrington, M.J., Birkedal, H., Lee, B.P., Messersmith, P.B., Lee, K.Y.C., Waite, J.H.: pH-induced metal–ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. PNAS 108(7), 2651–2655 (2011)

    CAS  Google Scholar 

  122. Berger, J., Reist, M., Mayer, J., Felt, O., Gurny, R.: Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 57(1), 35–52 (2004)

    CAS  Google Scholar 

  123. Wu, J., Su, Z.-G., Ma, G.-H.: A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int. J. Pharm. 315(1), 1–11 (2006)

    CAS  Google Scholar 

  124. Zhang, R., Tang, M., Bowyer, A., Eisenthal, R., Hubble, J.: A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials 26(22), 4677–4683 (2005)

    CAS  Google Scholar 

  125. Pourjavadi, A., Sadeghi, M., Hosseinzadeh, H.: Modified carrageenan. 5. Preparation, swelling behavior, salt- and pH-sensitivity of partially hydrolyzed crosslinked carrageenan-graft-polymethacrylamide superabsorbent hydrogel. Polym. Adv. Technol. 15(11), 645–653 (2004)

    CAS  Google Scholar 

  126. Bhattarai, N., Gunn, J., Zhang, M.: Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62(1), 83–99 (2010)

    CAS  Google Scholar 

  127. Alonso, M.J., Sánchez, A.: The potential of chitosan in ocular drug delivery. J. Pharm. Pharmacol. 55(11), 1451–1463 (2003)

    CAS  Google Scholar 

  128. Ishihara, M., Nakanishi, K., Ono, K., Sato, M., Kikuchi, M., Saito, Y., Yura, H., Matsui, T., Hattori, H., Uenoyama, M.: Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23(3), 833–840 (2002)

    CAS  Google Scholar 

  129. Patel, M., Mao, L., Wu, B., VandeVord, P.J.: GDNF–chitosan blended nerve guides: a functional study. J. Tissue Eng. Regen. Med. 1(5), 360–367 (2007)

    CAS  Google Scholar 

  130. Fujita, M., Ishihara, M., Simizu, M., Obara, K., Ishizuka, T., Saito, Y., Yura, H., Morimoto, Y., Takase, B., Matsui, T.: Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials 25(4), 699–706 (2004)

    CAS  Google Scholar 

  131. Rosalam, S., England, R.: Review of xanthan gum production from unmodified starches by Xanthomonas comprestris. Enzyme Microb. Technol. 39(2), 197–207 (2006)

    CAS  Google Scholar 

  132. Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T.: Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40(6), 945–948 (1992)

    CAS  Google Scholar 

  133. Taylor, K.C., Nasr-El-Din, H.A.: Water-soluble hydrophobically associating polymers for improved oil recovery: a literature review. J. Petrol. Sci. Eng. 19(3), 265–280 (1998)

    CAS  Google Scholar 

  134. Katzbauer, B.: Properties and applications of xanthan gum. Polym. Degrad. Stab. 59(1), 81–84 (1998)

    CAS  Google Scholar 

  135. Dumitriu, S., Magny, P., Montane, D., Vidal, P., Chornet, E.: Polyionic hydrogels obtained by complexation between xanthan and chitosan: their properties as supports for enzyme immobilization. J. Bioact. Compat. Polym. 9(2), 184–209 (1994)

    CAS  Google Scholar 

  136. Chellat, F., Tabrizian, M., Dumitriu, S., Chornet, E., Magny, P., Rivard, C.H., Yahia, L.H.: In vitro and in vivo biocompatibility of chitosan–xanthan polyionic complex. J. Biomed. Mater. Res. 51(1), 107–116 (2000)

    CAS  Google Scholar 

  137. Chellat, F., Tabrizian, M., Dumitriu, S., Chornet, E., Rivard, C.-H., Yahia, L.: Study of biodegradation behavior of chitosan–xanthan microspheres in simulated physiological media. J. Biomed. Mater. Res. 53(5), 592–599 (2000)

    CAS  Google Scholar 

  138. Dumitriu, S., Chornet, E.: Immobilization of xylanase in chitosan–xanthan hydrogels. Biotechnol. Progr. 13(5), 539–545 (1997)

    CAS  Google Scholar 

  139. Dumitriu, S., Chornet, E., Vidal, P. Polyionic insoluble hydrogels comprising xanthan and chitosan. US Patent 5,620,706, 1997

    Google Scholar 

  140. Dumitriu, S., Guttmann, H., Kahane, I.: Supported polyionic hydrogels. US Patent 5,858,392, 1999

    Google Scholar 

  141. Magnin, D., Lefebvre, J., Chornet, E., Dumitriu, S.: Physicochemical and structural characterization of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr. Polym. 55(4), 437–453 (2004)

    CAS  Google Scholar 

  142. Tsung, M., Burgess, D.J.: Preparation and stabilization of heparin/gelatin complex coacervate microcapsules. J. Pharm. Sci. 86(5), 603–607 (1997)

    Google Scholar 

  143. Clark, A., Richardson, R., Ross-Murphy, S., Stubbs, J.: Structural and mechanical properties of agar/gelatin co-gels. Small-deformation studies. Macromolecules 16(8), 1367–1374 (1983)

    CAS  Google Scholar 

  144. Clark, A.H., Gidley, M.J., Richardson, R.K., Ross-Murphy, S.B.: Rheological studies of aqueous amylose gels: the effect of chain length and concentration on gel modulus. Macromolecules 22(1), 346–351 (1989)

    CAS  Google Scholar 

  145. Lange, R.F., Van Gurp, M., Meijer, E.: Hydrogen-bonded supramolecular polymer networks. J. Polym. Sci., Part A: Polym. Chem. 37(19), 3657–3670 (1999)

    CAS  Google Scholar 

  146. Sijbesma, R.P., Beijer, F.H., Brunsveld, L., Folmer, B.J., Hirschberg, J.K., Lange, R.F., Lowe, J.K., Meijer, E.: Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278(5343), 1601–1604 (1997)

    CAS  Google Scholar 

  147. Tschoegl, N.W.: The phenomenological theory of linear viscoelastic behavior: an introduction. Springer, Berlin (1989)

    Google Scholar 

  148. Evans, G.R.: Challenges to nerve regeneration. In: Seminars in Surgical Oncology, vol. 3, pp. 312–318. Wiley Online Library (2000)

    Google Scholar 

  149. Belkas, J.S., Shoichet, M.S., Midha, R.: Peripheral nerve regeneration through guidance tubes. Neurol. Res. 26(2), 151–160 (2004)

    Google Scholar 

  150. Meek, M., Coert, J.: Clinical use of nerve conduits in peripheral-nerve repair: review of the literature. J. Reconstr. Microsurg. 18(02), 097–110 (2002)

    CAS  Google Scholar 

  151. Pfister, L.A., Papaloïzos, M., Merkle, H.P., Gander, B.: Hydrogel nerve conduits produced from alginate/chitosan complexes. J. Biomed. Mater. Res. A 80(4), 932–937 (2007)

    Google Scholar 

  152. Armstrong, J., Wenby, R., Meiselman, H., Fisher, T.: The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J. 87(6), 4259–4270 (2004)

    CAS  Google Scholar 

  153. Beel, J.A., Groswald, D.E., Luttges, M.W.: Alterations in the mechanical properties of peripheral nerve following crush injury. J. Biomech. 17(3), 185–193 (1984)

    CAS  Google Scholar 

  154. Borschel, G.H., Kia, K.F., Kuzon Jr, W.M., Dennis, R.G.: Mechanical properties of acellular peripheral nerve. J. Surg. Res. 114(2), 133–139 (2003)

    Google Scholar 

  155. Le Corre, D., Bras, J., Dufresne, A.: Starch nanoparticles: a review. Biomacromolecules 11(5), 1139–1153 (2010)

    Google Scholar 

  156. Leach, H.W.: Gelatinization of starch. In: Whistler, R.L., Paschall Eugene, F. (eds.) Starch: Chemistry and Technology, pp. 289–307. Academic Press, New York (1965)

    Google Scholar 

  157. Kartha, K., Srivastava, H.: Reaction of epichlorhydrin with carbohydrate polymers. Part II. Starch reaction mechanism and physicochemical properties of modified starch. Starch-Stärke 37(9), 297–306 (1985)

    CAS  Google Scholar 

  158. Kuniak, L., Marchessault, R.: Study of the crosslinking reaction between epichlorohydrin and starch. Starch-Stärke 24(4), 110–116 (1972)

    CAS  Google Scholar 

  159. Prado, H.J., Matulewicz, M.C., Bonelli, P.R., Cukierman, A.L.: Preparation and characterization of a novel starch-based interpolyelectrolyte complex as matrix for controlled drug release. Carbohydr. Res. 344(11), 1325–1331 (2009)

    CAS  Google Scholar 

  160. Capron, I., Yvon, M., Muller, G.: In vitro gastric stability of carrageenan. Food Hydrocolloids 10(2), 239–244 (1996)

    CAS  Google Scholar 

  161. Li, J.-Y., Yeh, A.-I.: Relationships between thermal, rheological characteristics and swelling power for various starches. J. Food Eng. 50(3), 141–148 (2001)

    Google Scholar 

  162. Dumitriu, S., Kahane, I., Guttmann, H.: Supported polyionic hydrogels containing biologically active material. US Patent 5,648,252, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Seiffert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Hackelbusch, S., Seiffert, S. (2015). Polymeric Supramolecular Hydrogels as Materials for Medicine. In: Loh, X. (eds) In-Situ Gelling Polymers. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-287-152-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-152-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-151-0

  • Online ISBN: 978-981-287-152-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics