Skip to main content

Land Use and Land Cover Change Prediction Using ANN-CA Model

  • Chapter
  • First Online:
Tropical Forest Ecosystem Services in Improving Livelihoods For Local Communities

Abstract

Land cover changes are characterised by the loss of natural resources, the loss of forests to urban development or the loss of agricultural areas to urban growth. This study applies the artificial neural network (ANN) method in cellular automata (CA) modelling to predict the changes, pattern and transition matrix of land use and land cover (LULC) changes for three decades with 10-year intervals: 1995–2005, 2005–2015 and 2015–2025. The maps for 1995, 2005 and 2015 obtained from Landsat 8 images are classified using the Maximum Likelihood Classification (MLC) algorithm with overall accuracies of 86%, 84% and 80%, respectively. Then, the prediction of LULC for 2025 is made after using the real map to satisfactorily validate the predicted map for 2015 derived from the map of 1995–2005, with the correctness percentage of 82.86 and the overall Kappa coefficients of 0.75. The forest cover shows a high decrement in the first 10-year period (44.87%). This trend is in line with the increasing areas of LULC for oil palm cultivation and urban development until 2025. Stable transitions can be observed from the ANN-CA model transition matrix, with values of 0.644, 0.541 and 0.787 transitions in 1995–2005, 2005–2015 and 2015–2025, respectively, for the forest area. For the urban area, the transition has been observed as 0.595, 0.736 and 0.954 in 1995–2005, 2005–2015 and 2015–2025, respectively. Meanwhile, oil palm only shows a stable transition of land-use changes in the second 20-year period, 2005–2015 with 0.606 and 2015–2025 with 0.843. The simulation of LULC changes in this study using the ANN-CA modelling can be a useful decision-making support tool to gauge the sustainability of urban area expansion, agricultural cultivation and production, as well as conservation of the remaining forest areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, Z., Yang, G., Zhong, Y., & Zhao, Y. (2021). Spatiotemporal change analysis and future scenario of LULC using the CA-ANN approach: A case study of the greater bay area, China. Land, 10(6), 584.

    Article  Google Scholar 

  • Abdul-Hamid, A. Q., Ali, M. H., Tseng, M. L., Lan, S., & Kumar, M. (2020). Impeding challenges on industry 4.0 in circular economy: Palm oil industry in Malaysia. Computers & Operations Research, 123, 105052.

    Article  Google Scholar 

  • Abdullah, S. A., & Nakagoshi, N. (2008). Landscape ecological approach in oil palm land use planning and management for forest conservation in Malaysia. In Landscape ecological applications in man-influenced areas (pp. 179–191). Springer.

    Google Scholar 

  • Aburas, M. M., Abdullah, S. H., Ramli, M. F., & Ash’aari, Z. H. (2015). Measuring land cover change in Seremban, Malaysia using NDVI index. Procedia Environmental Sciences, 30, 238–243.

    Article  Google Scholar 

  • Adila, N., Sasidhran, S., Kamarudin, N., Puan, C. L., Azhar, B., & Lindenmayer, D. B. (2017). Effects of peat swamp logging and agricultural expansion on species richness of native mammals in Peninsular Malaysia. Basic and Applied Ecology, 22, 1–10.

    Article  Google Scholar 

  • Aida, N., Sasidhran, S., Kamarudin, N., Aziz, N., Puan, C. L., & Azhar, B. (2016). Woody trees, green space and park size improve avian biodiversity in urban landscapes of Peninsular Malaysia. Ecological Indicators, 69, 176–183.

    Article  Google Scholar 

  • Asnawi, N. H., Ahmad, P., Choy, L. K., Syahir, M., & Khair, A. A. (2018). Land use and land cover change in Kuala Lumpur using remote sensing and geographic information system approach. Journal of Built Environment Technology and Engineering, 4(10), 206–216.

    Google Scholar 

  • Atiqah, A., Rhyma, P., Jamhuri, J., Zulfa, A., Samsinar, M., & Norizah, K. (2020). Using Google Earth imagery to detect distribution of forest cover change—Is the technique practical for Malaysian forests? The Malaysian Forester, 83(1), 1–15.

    Google Scholar 

  • Azhar, B., Saadun, N., Puan, C. L., Kamarudin, N., Aziz, N., Nurhidayu, S., & Fischer, J. (2015). Promoting landscape heterogeneity to improve the biodiversity benefits of certified palm oil production: Evidence from Peninsular Malaysia. Global Ecology and Conservation, 3, 553–561.

    Article  Google Scholar 

  • Beyer, E., Hagemann, A., & Misselwitz, P. (2020). Commodity flows and urban spaces. An introduction. Articulo-Journal of Urban Research, 21, 4522. https://doi.org/10.4000/articulo.4522

    Article  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

    Article  Google Scholar 

  • Cumming, G. S., Buerkert, A., Hoffmann, E. M., Schlecht, E., von Cramon-Taubadel, S., & Tscharntke, T. (2014). Implications of agricultural transitions and urbanization for ecosystem services. Nature, 515(7525), 50–57.

    Article  CAS  Google Scholar 

  • Egidi, G., Halbac-Cotoara-Zamfir, R., Cividino, S., Quaranta, G., Salvati, L., & Colantoni, A. (2020). Rural in town: Traditional agriculture, population trends, and long-term urban expansion in metropolitan Rome. Land, 9(2), 53.

    Article  Google Scholar 

  • Firdaus, R. R., Leong Tan, M., Rahmat, S. R., & Senevi Gunaratne, M. (2020). Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent Social Sciences, 6(1), 1818373.

    Article  Google Scholar 

  • Foster, W. A., Snaddon, J. L., Turner, E. C., Fayle, T. M., Cockerill, T. D., Ellwood, M. F., et al. (2011). Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1582), 3277–3291.

    Article  Google Scholar 

  • Hasan, A. R., & Nair, P. L. (2014). Urbanisation and growth of metropolitan centres in Malaysia. Malaysian Journal of Economic Studies, 51(1), 87–101.

    Google Scholar 

  • How Jin Aik, D., Ismail, M. H., & Muharam, F. M. (2020). Land use/land cover changes and the relationship with land surface temperature using Landsat and MODIS imageries in Cameron Highlands, Malaysia. Land, 9(10), 372.

    Article  Google Scholar 

  • Hua, A. K. (2017). Application of Ca-Markov model and land use/land cover changes in Malacca River Watershed, Malaysia. Applied Ecology and Environmental Research, 15(4), 605–622.

    Article  Google Scholar 

  • Hua, A. K., & Ping, O. W. (2018). The influence of land-use/land-cover changes on land surface temperature: A case study of Kuala Lumpur metropolitan city. European Journal of Remote Sensing, 51(1), 1049–1069.

    Article  Google Scholar 

  • Kanniah, K. D., & Ho, C. S. (2017). Urban forest cover change and sustainability of Malaysian cities. Chemical Engineering Transactions, 56, 673–678.

    Google Scholar 

  • Kanniah, K. D., Sheikhi, A., Cracknell, A. P., Goh, H. C., Tan, K. P., Ho, C. S., & Rasli, F. N. (2015). Satellite images for monitoring mangrove cover changes in a fast growing economic region in southern Peninsular Malaysia. Remote Sensing, 7(11), 14360–14385.

    Article  Google Scholar 

  • Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of spatio-contextual information. European Journal of Remote Sensing, 47(1), 389–411.

    Article  Google Scholar 

  • Mahamud, M. A., Samat, N., Tan, M. L., Chan, N. W., & Tew, Y. L. (2019). Prediction of future land use land cover changes of Kelantan, Malaysia. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2019, 379.

    Article  Google Scholar 

  • Mallick, J., AlQadhi, S., Talukdar, S., Pradhan, B., Bindajam, A. A., Islam, A. R. M., & Dajam, A. S. (2021). A novel technique for modeling ecosystem health condition: A case study in Saudi Arabia. Remote Sensing, 13(13), 2632.

    Article  Google Scholar 

  • Marzuki, A., & Jais, A. S. (2020). Urbanisation and the concerns for food security in Malaysia. Planning Malaysia, 18(13), 202–217.

    Article  Google Scholar 

  • Miyamoto, M., Parid, M. M., Aini, Z. N., & Michinaka, T. (2014). Proximate and underlying causes of forest cover change in Peninsular Malaysia. Forest Policy and Economics, 44, 18–25.

    Article  Google Scholar 

  • Noor, N. M., Abdullah, A., & Manzahani, M. N. H. (2013). Land cover change detection analysis on urban green area loss using GIS and remote sensing techniques. Planning Malaysia, 11(3), 111.

    Google Scholar 

  • Norizah, K. M., Hasmadi, I., Jusoff, K., & Sood, A. M. (2011). Evolution and development of forest harvesting in Peninsular Malaysia. The Malaysian Forester, 74(2), 79–102.

    Google Scholar 

  • Parveez, G. K. A., Tarmizi, A. H. A., Sundram, S., Loh, S. K., Ong-Abdullah, M. E. I. L. I. N. A., Palam, K. D. P., et al. (2021). Oil palm economic performance in Malaysia and R&D progress in 2020. Journal of Oil Palm Research, 33(2), 111.

    Google Scholar 

  • Reza, M. I. H. (2014). Measuring forest fragmentation in the protected area system of a rapidly developing Southeast Asian tropical region. Science Postprint, 1(1), e00030. https://doi.org/10.14340/spp.2014.09a0001

    Article  Google Scholar 

  • Salvati, L., & Lamonica, G. R. (2020). Containing urban expansion: Densification vs greenfield development, socio-demographic transformations and the economic crisis in a Southern European City, 2006–2015. Ecological Indicators, 110(105), 923.

    Google Scholar 

  • Saputra, M. H., & Lee, H. S. (2019). Prediction of land use and land cover changes for north Sumatra, Indonesia, using an artificial-neural-network-based cellular automaton. Sustainability, 11(11), 3024.

    Article  Google Scholar 

  • Sasidhran, S., Adila, N., Hamdan, M. S., Samantha, L. D., Aziz, N., Kamarudin, N., et al. (2016). Habitat occupancy patterns and activity rate of native mammals in tropical fragmented peat swamp reserves in Peninsular Malaysia. Forest Ecology and Management, 363, 140–148.

    Article  Google Scholar 

  • Shaharum, N. S. N., Shafri, H. Z. M., Ghani, W. A. W. A. K., Samsatli, S., Al-Habshi, M. M. A., & Yusuf, B. (2020). Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sensing Applications: Society and Environment, 17, 100287.

    Article  Google Scholar 

  • Sheikhi, A., & Kanniah, K. D. (2018). Impact of land cover change on urban surface temperature in Iskandar Malaysia. Chemical Engineering Transactions, 63, 25–30.

    Google Scholar 

  • Shevade, V. S., & Loboda, T. V. (2019). Oil palm plantations in Peninsular Malaysia: Determinants and constraints on expansion. PLoS One, 14(2), e0210628.

    Article  CAS  Google Scholar 

  • Tee, S. L., Samantha, L. D., Kamarudin, N., Akbar, Z., Lechner, A. M., Ashton-Butt, A., & Azhar, B. (2018). Urban forest fragmentation impoverishes native mammalian biodiversity in the tropics. Ecology and Evolution, 8(24), 12506–12521.

    Article  Google Scholar 

  • Teuscher, M., Gérard, A., Brose, U., Buchori, D., Clough, Y., Ehbrecht, M., et al. (2016). Experimental biodiversity enrichment in oil-palm-dominated landscapes in Indonesia. Frontiers in Plant Science, 7, 1538.

    Article  Google Scholar 

  • Thomas, N., Lucas, R., Bunting, P., Hardy, A., Rosenqvist, A., & Simard, M. (2017). Distribution and drivers of global mangrove forest change, 1996–2010. PLoS One, 12(6), e0179302.

    Article  Google Scholar 

  • van Grunsven, L., & Benson, M. (2020). Urban development in Malaysia: Towards a new systems paradigm. Retrieved July 28, 2021, from https://thinkcityinstitute.org/wp-content/uploads/2020/11/Issue-2.pdf

  • Varkkey, H., Tyson, A., & Choiruzzad, S. A. B. (2018). Palm oil intensification and expansion in Indonesia and Malaysia: Environmental and socio-political factors influencing policy. Forest Policy and Economics, 92, 148–159.

    Article  Google Scholar 

  • Wan Mohd Jaafar, W. S., Abdul Maulud, K. N., Muhmad Kamarulzaman, A. M., Raihan, A., Md Sah, S., Ahmad, A., Saad, S. N., Mohd Azmi, A. T., Jusoh Syukri, N. K., & Razzaq Khan, W. (2020). The influence of deforestation on land surface temperature—A case study of Perak and Kedah, Malaysia. Forests, 11(6), 670.

    Article  Google Scholar 

  • Xu, Y., Yu, L., Li, W., Ciais, P., Cheng, Y., & Gong, P. (2020). Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016. Earth System Science Data, 12(2), 847–867.

    Article  Google Scholar 

  • Zulfa, A. W., Norizah, K., Hamdan, O., Zulkifly, S., Faridah-Hanum, I., & Rhyma, P. P. (2020). Discriminating trees species from the relationship between spectral reflectance and chlorophyll contents of mangrove forest in Malaysia. Ecological Indicators, 111, 106024.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Norizah .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Validation Point Distribution with Global Moran’s Index

The map for validation points distribution in the area of Selangor state that is bordered by peninsular Malaysia.

Appendix 2: (a) Digital Elevation Model (DEM), and (b) Road Network in the Study Area

The maps for Selangor state with digital evaluation model with high and low elevation bordered by peninsular Malaysia. The adjacent map is for road network with distance to road high and low bordered by peninsular Malaysia.

Appendix 3: (a) Real Map, and (b) Predicted Map for 2015

The map of Selangor state for land use and land cover in 2015. The legends marked are forest, oil palm, open area, paddy, urban, and water bodies.

Appendix 4: Validation Graph and Kappa Statistics

A graph on multiple resolution budget. A validation graph between real L U L C for 2015 and predicted L U L C for 2015. The graph has information on percentage correctness, Kappa overall, histo, and loc. The curves represent no location, no quantity inform, no location medium quantity inform, medium location medium quantity inform.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Norizah, K., Jamhuri, J., Balqis, M., Mohd Hasmadi, I., Nor Akmar, A.A. (2023). Land Use and Land Cover Change Prediction Using ANN-CA Model. In: Samdin, Z., Kamaruddin, N., Razali, S.M. (eds) Tropical Forest Ecosystem Services in Improving Livelihoods For Local Communities. Springer, Singapore. https://doi.org/10.1007/978-981-19-3342-4_7

Download citation

Publish with us

Policies and ethics