Skip to main content

Dynamical Analysis of a Caputo Fractional Order SIR Epidemic Model with a General Treatment Function

  • Chapter
  • First Online:
Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact

Part of the book series: Infosys Science Foundation Series ((ISFM))

Abstract

In this work, a fractional order SIR epidemic model is proposed. We first prove the existence, uniqueness, non-negativity and boundedness of solutions to the considered model. We also study the existence of equilibrium points. Some sufficient conditions are derived to ensure, in terms of the basic reproduction number, the global asymptotic stability of the disease free equilibrium point and endemic equilibrium point. Finally, numerical simulations are illustrated to verify the validity of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdo, M.S., Shah, K., Wahash, H.A., Panchal, S.K.: On a comprehensive model of the novel coronavirus (covid-19) under mittag-leffler derivative. Chaos, Solid. & Fractals 135 (2020)

    Google Scholar 

  2. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  3. Ahmed, E., El-Sayed, A., El-Saka, H.A.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys. Lett. A 358(1), 1–4 (2006)

    Article  MathSciNet  Google Scholar 

  4. Ahmed, I., Baba, I.A., Yusuf, A., Poom, K., Wiyada, K.: Analysis of caputo fractional-order model for covid-19 with lockdown. Adv. Differ. Equ. 394 (2020)

    Google Scholar 

  5. Almeida, R., Cruz, A.M.C.B., Martins, N., Monteiro, M.T.T.: An epidemiological MSEIR model described by the Caputo fractional derivative. Int. J. Dyn. Control 7, 776–784 (2019)

    Article  MathSciNet  Google Scholar 

  6. Beretta, E., Hara, T., Ma, W., Takeuchi, Y.: Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal.: Theory, Methods Appl. 47(6), 4107–4115 (2001)

    Article  MathSciNet  Google Scholar 

  7. Boukhouima, A., Hattaf, K., Yousfi, N.: Dynamics of a fractional order HIV infection model with specific functional response and cure rate. Int. J. Differ. Equ. 332 (2017)

    Google Scholar 

  8. Chauhan, S., Bhatia, S.K., Gupta, S.: Effect of pollution on dynamics of SIR model with treatment. Int. J. Biomath. 08(06), 1550083 (2015)

    Article  MathSciNet  Google Scholar 

  9. Diethelm, K.: The analysis of fractional differential equations an application-oriented exposition using differential operators of Caputo type. Springer, Berlin Heidelberg (2010)

    MATH  Google Scholar 

  10. Ding, Y., Ye, H.: A fractional-order differential equation model of HIV infection of CD4+ T-cells. Math. Comput. Model. 50(3–4), 386–392 (2009)

    Google Scholar 

  11. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1), 650–659 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dubey, B., Dubey, P., Dubey, B.: Dynamics of an SIR model with nonlinear incidence and treatment rate. 10:718–737 (2016)

    Google Scholar 

  13. Eckalbar, J.C., Eckalbar, W.L.: Dynamics of an epidemic model with quadratic treatment. Nonlinear Anal.: Real World Appl. 12(1), 320–332 (2011)

    Article  MathSciNet  Google Scholar 

  14. El-Saka, H.: The fractional-order SIR and SIRS epidemic models with variable population size. Math. Sci. Lett. 2, 195–200 (2013)

    Google Scholar 

  15. Elazzouzi, A., Lamrani Alaoui, A., Tilioua, M., Tridane, A.: Global stability analysis for a generalised delayed sir model with vaccination and treatment. Adv. Differ. Equ. 532 (2019)

    Google Scholar 

  16. Enatsu, Y., Messina, E., Nakata, Y., Muroya, Y., Russo, E., Vecchio, A.: Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates. J. Appl. Math. Comput. 39(1), 15–34 (2012)

    Article  MathSciNet  Google Scholar 

  17. Enatsu, Y., Nakata, Y., Muroya, Y.: Global stability of SIRS epidemic models with a class of nonlinear incidence rates and distributed delays. Acta Math. Sci. Ser. B Engl. Ed. 32(3), 851–865 (2012)

    Google Scholar 

  18. Guo, Y.: The stability of the positive solution for a fractional SIR model. Int. J. Biomath. 10, 06 (2016)

    MathSciNet  Google Scholar 

  19. Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal.: Real World Appl. 26, 289–305 (2015)

    Google Scholar 

  20. Karaji, P., Nyamoradi, N.: Analysis of a fractional SIR model with general incidence function. Appl. Math. Lett. (2020)

    Google Scholar 

  21. Korobeinikov, A.: Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull.Math. Biol. 68(3), 615 (2006)

    Google Scholar 

  22. Korobeinikov, A., Maini, P.K.: A lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math. Biosci. Eng. 1(1), 57–60 (2004)

    Article  MathSciNet  Google Scholar 

  23. Kuang, Y.: Delay differential equations with applications in population dynamics. Mathematics in Science and Engineering, vol. 191. Academic Press Inc, Boston, MA (1993)

    Google Scholar 

  24. Kumar, A., Nilam: Stability of a time delayed SIR epidemic model along with nonlinear incidence rate and Holling type-ii treatment rate. Int. J. Comput. Methods 15(06), 1850055 (2018)

    Google Scholar 

  25. LaSalle, J., Artstein, Z.: The Stability of Dynamical Systems. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (1976)

    Google Scholar 

  26. Li, C.-H., Tsai, C.-C., Yang, S.-Y.: Analysis of the permanence of an SIR epidemic model with logistic process and distributed time delay. Commun. Nonlinear Sci. Numer. Simul. 17(9), 3696–3707 (2012)

    Article  MathSciNet  Google Scholar 

  27. Li, H.-L., Zhang, L., Hu, C., Jiang, Y.-L., Teng, Z.: Dynamic analysis of a fractional-order single-species model with diffusion. Nonlinear Anal.: Modell. Control 22, 303–316, 05 (2017)

    Google Scholar 

  28. Li, H.-L., Zhang, L., Hu, C., Jiang, Y.-L., Teng, Z.: Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J. Appl. Math. Comput. 54(1-2), 435–449, 5 (2017)

    Google Scholar 

  29. Li, J., Teng, Z., Wang, G., Zhang, L., Hu, C.: Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment. Chaos, Solit. Fractals 99, 63–71 (2017)

    Article  MathSciNet  Google Scholar 

  30. Li, Y., Chen, Y., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  Google Scholar 

  31. Lin, W.: Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 332(1), 709–726 (2007)

    Article  MathSciNet  Google Scholar 

  32. Liu, K., Jiang, W.: Stability of nonlinear Caputo fractional differential equations. Appl. Math. Model. 40(5), 3919–3924 (2016)

    Article  MathSciNet  Google Scholar 

  33. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solit. Fractals 7(9), 1461–1477 (1996)

    Article  MathSciNet  Google Scholar 

  34. Majeed, S.N.: Dynamical study of an SIR epidemic model with nonlinear incidence rate and regress of treatment. Ibn AL- Haitham J. Pure Appl. Sci., 384–396 (2018)

    Google Scholar 

  35. Odibat, Z., Momani, S.: An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inf. 26, 01 (2008)

    MATH  Google Scholar 

  36. Z. Odibat and N. Shawagfeh. Generalized Taylor’s formula. Applied Mathematics and Computation, 186:286–293, 03 2007

    Google Scholar 

  37. Podlubny , I., Thimann, K.V.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1998)

    Google Scholar 

  38. Rossikhin, Y., Shitikova, M.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 01 (1997)

    Article  Google Scholar 

  39. Rostamy, D., Mottaghi, E.: Stability analysis of a fractional-order epidemics model with multiple equilibriums. Adv. Differ. Equ. 2016(1), 170 (Jun 2016)

    Google Scholar 

  40. Salle , J.L., Lefschetz, S.: Stability by Liapunov’s Direct Method with Applications, vol. 4 of Mathematics in Science and Engineering. Elsevier (1961)

    Google Scholar 

  41. Sarbaz, H.K., Muhammad, S., Mehboob, A., Faisal, S.: A quantitative and qualitative analysis of the covid-19 pandemic model. Chaos, Solit. Fractals 138, 109932 (2020)

    Google Scholar 

  42. Shaikh, A.S., Shaikh, I.N., Nisar, K.S.: A mathematical model of covid-19 using fractional derivative: outbreak in india with dynamics of transmission and control. Adv. Differ. Equ. 373 (2020)

    Google Scholar 

  43. Soniya, L., Gunjan, S., Bhawna, M., Rajesh, K.: Predicting optimal lockdown period with parametric approach using three-phase maturation SIRD model for covid-19 pandemic. Chaos, Solit. Fractals 138, 109939 (2020)

    Google Scholar 

  44. Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for covid-19 transmission by using the caputo fractional derivative. Chaos, Solit. Fractals 140, 110107 (2020)

    Google Scholar 

  45. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  46. Vargas-De-León, C.: Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 24, 75–85 (July 2015)

    Google Scholar 

  47. Yasuhiro, T., Wanbiao, M., Edoardo, B.: Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear Anal. 42(6), 931–947 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the reviewers for careful reading and valuable suggestions to improve the quality of the paper.The support from Moulay Ismail University of Meknes (project UMI 2018) and Covid-19 project (Analyse épidémique du Covid-19 au Maroc par modélisation dynamique et intelligence artificielle) jointly funded by CNRST and the Moroccan Ministry of Higher Education and Scientific Research, is acknowledged. P. Agarwal was very thankful to the SERB (project TAR/2018/000001), DST (project DST/INT/DAAD/P-21/2019, INT/RUS/RFBR/308) and NBHM (project 02011/12/ 2020NBHM(R.P)/R& D II/7867) for their necessary support for providing the necessary facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Sidi Ammi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alaoui, A.L., Tilioua, M., Sidi Ammi, M.R., Agarwal, P. (2021). Dynamical Analysis of a Caputo Fractional Order SIR Epidemic Model with a General Treatment Function. In: Agarwal, P., Nieto, J.J., Ruzhansky, M., Torres, D.F.M. (eds) Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact. Infosys Science Foundation Series(). Springer, Singapore. https://doi.org/10.1007/978-981-16-2450-6_2

Download citation

Publish with us

Policies and ethics