Skip to main content

A Perspective on Perovskite Solar Cells

  • Chapter
  • First Online:
New Research Directions in Solar Energy Technologies

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

The emergence of the new class of organic–inorganic hybrid perovskite materials has found numerous applications in a plethora of next-generation optoelectronic devices like solar cells, light-emitting diodes, photodetectors, and lasers. Synthetic controls of perovskite materials through composition engineering, solvent chemistry, morphology and surface controlling, surface passivation, and band engineering have made the perovskite solar cells the fasted growing technology in the history of solar cells evolution. The perovskite semiconductors possess a number of unique functionalities like easily tunable band-gap energy, solution processability, form long-range crystals at low temperatures (<150 °C), excellent charge transport properties, and self-resistance toward electronic impurity. However, ionic nature and relaxed structural arrangement of the perovskite crystals makes them vulnerable to degradation by moisture and temperature. The stability of perovskite-based solar cells is one of the major roadblocks for their commercialization, though the power conversion efficiency (25.1%) is comparable to monocrystalline silicon solar cells. In this chapter, we will discuss the recent progress in synthesis strategy, structural stability, optical and electronic properties, and evolution in device engineering of the highly efficient perovskite solar cells. We will also elaborate on the future directions to improve stability of the perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter JM, Alsari M, Booker EP, Hutter EM, Pearson AP, Lilliu S, Savenije TJ, Rensmo H, Divitini G, Ducati C, Friend RH, Stranks SD (2018) Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555(7697):497–501

    Article  Google Scholar 

  • Aharon S, Dymshits A, Rotem A, Etgar L (2015) Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. J Mater Chem A 3:9171–9178

    Article  Google Scholar 

  • Aitola K, Sveinbjoärnssona K, Correa-Baenab JP, Kaskelac A, Abated A, Tianc Y, Johanssona MJE, Graätzel M, Kauppinenc IE, Hagfeldtb A, Boschloo G (2016) Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ Sci 9:461–466

    Google Scholar 

  • Alidoust N, Toroker MC, Keith JA, Carter EA (2014) Significant reduction in NiO band gap upon formation of LixNi1−xO alloys: applications to solar energy conversion. Chem Sus Chem 7:195–201

    Article  Google Scholar 

  • Anaya M, Correa-Baena JP, Lozano G, Saliba M, Anguita P, Roose B, Abate A, Steiner U, Grätzel M, Calvo ME, Hagfeldt A, Miguez H (2016) Optical analysis of CH3NH3SnxPb1−xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells. J Mater Chem A 4:11214–11221

    Article  Google Scholar 

  • Andreani LC, Bozzola A, Kowalczewski P, Liscidini M, Redorici L (2018) Silicon solar cells: toward the efficiency limits. Adv Phys-X 4(1):1548305

    Google Scholar 

  • Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque SA (2015) The Role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew Chem Int Ed 54(28):8208–8212

    Article  Google Scholar 

  • Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Grätzel M (2017) Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20. Science 358:768–771

    Article  Google Scholar 

  • Asghar MI, Zhang J, Wang H, Lund PD (2017) Device stability of perovskite solar cells—a review. Renew Sustain Energy Rev 77:131–146

    Article  Google Scholar 

  • Azpiroz JM, Mosconi E, Bisquert J, De Angelis F (2015) Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci 8(7):2118–2127

    Article  Google Scholar 

  • Bach U, Lupo D, Comte P, Moser J, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583

    Article  Google Scholar 

  • Bai Y, Yu H, Zhu ZL, Jiang K, Zhang T, Zhao N, Yang SH, Yan H (2015) High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. J Mater Chem A 3:9098–9102

    Article  Google Scholar 

  • Bai Y, Dong Q, Shao Y, Deng Y, Wang Q, Shen L, Wang D, Wei W, Huang J (2016) Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat Commun 7:12806

    Article  Google Scholar 

  • Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, Graetzel M, White TJ (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitized solar cell applications. J Mater Chem A 1(18):5628–5641

    Article  Google Scholar 

  • Ball JM, Lee MM, Hey A, Snaith HJ (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ Sci 6:1739–1743

    Article  Google Scholar 

  • Bao Q, Li CM, Liao L, Yang H, Wang W, Ke C, Song Q, Bao H, Yu T, Loh KP, Guo J (2009) Electrical transport and photovoltaic effects of core–shell CuO/C60 nanowire heterostructure. Nanotechnology 20:065203

    Article  Google Scholar 

  • Beckmann PA (2010) A review of polytypism in lead iodide. Cryst Res Tech 45(5):455–460

    Article  Google Scholar 

  • Behrouznejad F, Tsai CM, Narra S, Diau EW, Taghavinia N (2017) Interfacial investigation on printable carbon-based mesoscopic perovskite solar cells with NiOx/C back electrode. ACS Appl Mater Interfaces 9:25204–25215

    Article  Google Scholar 

  • Bera A, Wu K, Sheikh A, Alarousu E, Mohammed OF, Wu T (2015) Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J Phys Chem C 118:28494–28501

    Article  Google Scholar 

  • Bi D, Moon S-J, Haäggman L, Boschloo G, Yang L, Johansson EMJ, Nazeeruddin MK, Graätzel M, Hagfeldt A (2013) Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv 3:18762–18766

    Article  Google Scholar 

  • Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena J-P (2016) Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci Adv 2:e1501170

    Article  Google Scholar 

  • Binek A, Hanusch FC, Docampo P, Bein T (2015) Stabilization of the trigonal high-temperature phase of formamidinium lead iodide. J Phys Chem Lett 6:1249–1253

    Article  Google Scholar 

  • Bu IYY, Fu YS, Li JF, Guo TF (2017) Large-area electrospray-deposited nanocrystalline CuXO hole transport layer for perovskite solar cells. RSC Adv 7:46651–46656

    Article  Google Scholar 

  • Buin A, Comin R, Xu J, Ip AH, Sargent EH (2015) Halide-dependent electronic structure of organolead perovskite materials. Chem Mater 27(12):4405–4412

    Article  Google Scholar 

  • Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319

    Article  Google Scholar 

  • Bush KA, Palmstrom AF, Yu ZJ, Boccard M, Cheacharoen R, Mailoa JP, McMeekin DP, Hoye RLZ, Bailie CD, Leijtens T (2017) 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2:17009

    Google Scholar 

  • Cai ML, Tiong VT, Hreid T, Bell J, Wang HX (2015) An efficient hole transport material composite based on poly (3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. J Mater Chem A 3:2784–2793

    Article  Google Scholar 

  • Cao J, Liu Y-M, Jing X, Yin J, Li J, Xu B, Tan Y-Z, Zheng N (2015a) Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. J Am Chem Soc 137:10914–10917

    Article  Google Scholar 

  • Cao K, Zuo Z, Cui J, Shen Y, Moehl T, Zakeeruddin SM, Grätzel M, Wang M (2015b) Efficient screen printed perovskite solar cells based on mesoscopicTiO2/Al2O3/NiO/carbon architecture. Nano Energy 17:171–179

    Article  Google Scholar 

  • Cao K, Cui J, Zhang H, Li H, Song JK, Shen Y, Cheng YB, Wang MK (2015c) Efficient mesoscopic perovskite solar cells based on the CH3NH3PbI2Br light absorber. J Mater Chem A 3:9116–9122

    Article  Google Scholar 

  • Capasso A, Matteocci F, Najafi L, Prato M, Buha J, Cinà L, Pellegrini V, Carlo AD, Bonaccorso F (2016) Few-layer: MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv Energy Mater 6:1600920

    Google Scholar 

  • Carnie MJ, Charbonneau C, Davies ML, Troughton J, Watson TM, Wojciechowski K, Snaith H, Worsley DA (2013) A one-step low temperature processing route for organolead halide perovskite solar cells. Chem Commun 49:7893–7895

    Article  Google Scholar 

  • Chan CY, Wang YY, Wu GW, Diau EWG (2016) Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. J Mater Chem A 4:3872–3878

    Article  Google Scholar 

  • Chang X, Li W, Zhu L, Liu H, Geng H, Xiang S, Liu J, Chen H (2016a) Carbon-based CsPbBr 3 perovskite solar cells: all-ambient processes and high thermal stability. ACS Appl Mater Interfaces 8:33649–33655

    Article  Google Scholar 

  • Chang X, Li W, Chen H, Zhu L, Liu H, Geng H, Xiang S, Liu J, Zheng X, Yang Y, Yang S (2016b) Colloidal precursor-induced growth of ultra-even CH3NH3PbI3 for high-performance paintable carbon-based perovskite solar cells. ACS Appl Mater Interfaces 8:30184–30192

    Article  Google Scholar 

  • Chatterjee S, Pal AJ (2016) Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J Phys Chem C 120:1428–1437

    Article  Google Scholar 

  • Chavhan S, Miguel O, Grande HJ, Gonzalez-Pedro V, Sanchez RS, Barea EM, Mora-Sero I, Tena-Zaera R (2014) Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. J Mater Chem A 2:12754–12760

    Article  Google Scholar 

  • Chen SY, Walsh A, Gong XG, Wei SH (2013) Classification of lattice defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐abundant solar cell absorbers. Adv Mater 25:1522–1539

    Google Scholar 

  • Chen H, Wei Z, Yan K, Yi Y, Wang J, Yang S (2014) Liquid phase deposition of TiO2 nanolayer affords CH3NH3PbI3/nanocarbon solar cells with high open-circuit voltage. Faraday Discuss 176:271–286

    Article  Google Scholar 

  • Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Graätzel M, Han L (2015a) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350:944–948

    Article  Google Scholar 

  • Chen WY, Deng LL, Dai SM, Wang X, Tian CB, Zhan XX, Xie SY, Huang RB, Zheng LS (2015b) Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J Mater Chem A 3:19353–19359

    Article  Google Scholar 

  • Chen W, Wu YZ, Liu J, Qin CJ, Yang XD, Islam A, Cheng YB, Han LY (2015c) Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ Sci 8:629–640

    Article  Google Scholar 

  • Chen HN, Wei ZH, Zheng XL, Yang SH (2015d) A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15:216–226

    Article  Google Scholar 

  • Chen C, Cheng Y, Dai Q, Song H (2015e) Radio frequency magnetron sputtering deposition of TiO2 thin films and their perovskite solar cell applications. Sci Rep 5:17684

    Article  Google Scholar 

  • Chen B, Shi J, Zheng X, Zhou Y, Zhu K, Priya S (2015f) Ferroelectric solar cells based on inorganic–organic hybrid perovskites. J Mater Chem A 3(15):7699–7705

    Article  Google Scholar 

  • Chen ST, Roh K, Lee J, Chong WK, Lu Y, Mathews N, Sum TC, Nurmikko A (2016a) A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano 10(4):3959–3967

    Article  Google Scholar 

  • Chen CM, Lin ZK, Huang WJ, Yang SH (2016b) WO3 nanoparticles or nanorods incorporating Cs2CO3/PCBM buffer bilayer as carriers transporting materials for perovskite solar cells. Nanoscale Res Lett 11:464

    Article  Google Scholar 

  • Chen JZ, Xiong YL, Rong YG, Mei AY, Sheng YS, Jiang P, Hu Y, Li X, Han HW (2016c) Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy 27:130–137

    Article  Google Scholar 

  • Chen J, Rong Y, Mei A, Xiong Y, Liu T, Sheng Y, Jiang P, Hong L, Guan Y, Zhu X, Hou X, Duan M, Zhao J, Li X, Han H (2016d) Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3−x)(BF4)x. Adv. Energy Mater 6:1502009

    Google Scholar 

  • Chen HN, Zheng XL, Li Q, Yang YL, Xiao S, Hu C, Bai Y, Zhang T, Wong KS, Yang SH (2016e) An amorphous precursor route to the conformable oriented crystallization of CH3NH3PbBr 3 in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells. J Mater Chem A 4:12897–12912

    Article  Google Scholar 

  • Chen HN, Wei ZH, He HX, Zheng XL, Wong KS, Yang SH (2016f) Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv Energy Mater 6:1502087

    Article  Google Scholar 

  • Chen C-C, Chang SH, Chen L-C, Kao F-S, Cheng H-M, Yeh S-C, Chen C-T, Wu W-T, Tseng Z-L, Chuang CL (2016g) Improving the efficiency of inverted mixed-organic-cation perovskite absorber based photovoltaics by tailing the surface roughness of PEDOT: PSS thin film. Sol Energy 134:445–451

    Google Scholar 

  • Chen LC, Tseng ZL, Huang JK (2016h) A study of inverted-type perovskite solar cells with various composition ratios of (FAPbI3)(1−x)(MAPbBr 3)x. Nanomaterials 6:183

    Article  Google Scholar 

  • Chen W, Liu FZ, Feng XY, Djurisic AB, Chan WK, He ZB (2017a) Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv Energy Mater 7:1700722

    Article  Google Scholar 

  • Chen W, Xu L, Feng X, Jie J, He Z (2017b) Metal acetylacetonate series in interface engineering for full low-temperature-processed, high-performance, and stable planar perovskite solar cells with conversion efficiency over 16% on 1 cm2 scale. Adv Mater 29:1603923

    Google Scholar 

  • Chen M, Zha RH, Yuan ZY, Jing QS, Huang ZY, Yang XK, Yang SM, Zhao XH, Xu DL, Zou GDL (2017c) Boron and phosphorus co-doped carbon counter electrode for efficient hole-conductor-free perovskite solar cell. Chem Eng J 313:791–800

    Article  Google Scholar 

  • Chen Z, Yang G, Zheng X, Lei H, Chen C, Ma J, Wang H, Fang G (2017d) Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: suppressed hysteresis and flexible photovoltaic application. J Power Sources 351:123–129

    Article  Google Scholar 

  • Chen J, Xu J, Xiao L, Zhang B, Dai S, Yao J (2017e) Mixed-Organic-Cation (FA)x(MA)1−xPbI3 planar perovskite solar cells with 16.48% efficiency via a low-pressure vapor-assisted solution processl. ACS Appl Mater Interfaces 9:2449–2458

    Google Scholar 

  • Chen B-X, Li W-G, Rao H-S, Xu Y-F, Kuang D-B, Su C-Y (2017f) Large-grained perovskite films via FAxMA1−xPb(IxBr1−x)3 single crystal precursor for efficient solar cells. Nano Energy 34:264–270

    Article  Google Scholar 

  • Chen B-A, Lin J-T, Suen N-T, Tsao C-W, Chu T-C, Hsu Y-Y, Chan T-S, Chan Y-T, Yang J-S, Chiu C-W, Chen HM (2017g) In situ identification of photo-and moisture-dependent phase evolution of perovskite solar cells. ACS Energy Lett 2(2):342–348

    Google Scholar 

  • Chen H, Ye F, Tang WT, He JJ, Yin MS, Wang YB, Xie FX, Bi EB, Yang XD, Gratzel M, Han LY (2017h) A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550(7674):92

    Article  Google Scholar 

  • Chen R, Wang W, Bu TL, Ku ZL, Zhong J, Peng Y, Xiao S, You W, Huang F, Cheng Y, Fu Z (2019) Materials and structures for the electron transport layer of efficient and stable perovskite solar cells. Acta Phys-Chim Sin 35:401–407

    Article  Google Scholar 

  • Cheng Y, Yang Q-D, Xiao J, Xue Q, Li H-W, Guan Z, Yip H-L, Tsang S-W (2015) Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS Appl Mater Interfaces 7:19986–19993

    Article  Google Scholar 

  • Cheng N, Liu P, Qi F, Xiao YQ, Yu WJ, Yu ZH, Liu W, Guo SS, Zhao XZ (2016) Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells. J Power Sources 332:24–29

    Article  Google Scholar 

  • Choi H, Jeong J, Kim H-B, Kim S, Walker B, Kim G-H, Kim JY (2014) Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7:80–85

    Article  Google Scholar 

  • Choi J, Song S, Horantner MT, Snaith HJ, Park T (2016) Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 10:6029–6036

    Article  Google Scholar 

  • Christians JA, Fung RCM, Kamat PV (2014) An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc 136:758–764

    Google Scholar 

  • Ciro J, Ramirez D, Mejia Escobar MA, Montoya JF, Mesa S, Betancur R, Jaramillo F (2017) Self-functionalization behind a solution-processed NiOx film used as hole transporting layer for efficient perovskite solar cells. ACS Appl Mater Interfaces 9:12348–12354

    Article  Google Scholar 

  • Coll M, Gomez A, Mas-Marza E, Almora O, Garcia-Belmonte G, Campoy-Quiles M, Bisquert J (2015) Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J Phys Chem Lett 6(8):1408–1413

    Article  Google Scholar 

  • Correa-Baena J-P, Abate A, Saliba M, Tress W, Jacobssonm TJ, Grätzelm M, Hagfeldtm A (2017) The rapid evolution of highly efficient perovskite solar cells. Energy Environ Sci 10:710–727

    Article  Google Scholar 

  • D’Innocenzo V, Grancini G, Alcocer MJP, Kandada ARS, Stranks SD, Lee MM, Lanzani G, Snaith HJ, Petrozza A (2014) Excitons versus free charges in organo-lead tri-halide perovskites. Nat Comm 5(1):3586

    Article  Google Scholar 

  • Dang Y, Liu Y, Sun Y, Yuan D, Liu X, Lu W, Liu G, Xia H, Tao X (2015) Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm 17(3):665–670

    Article  Google Scholar 

  • Dasgupta U, Chatterjee S, Pal AJ (2017) Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Sol Energy Mater Sol Cells 172:353–360

    Article  Google Scholar 

  • De Bastiani M, Dell’Erba G, Gandini M, D’Innocenzo V, Neutzner S, Kandada ARS, Grancini G, Binda M, Prato M, Ball JM, Caironi M, Petrozza A (2016) Ion migration and the role of preconditioning cycles in the stabilization of the J–V characteristics of inverted hybrid perovskite solar cells. Adv Energy Mater 6(2):1501453

    Article  Google Scholar 

  • Deng J, Mortazavi M, Medhekar NV, Liu JZ (2012) Band engineering of Ni1−xMgxO alloys for photocathodes of high efficiency dye-sensitized solar cells. J Appl Phys 112:123703

    Article  Google Scholar 

  • Deng Y, Dong Q, Bi C, Yuan Y, Huang J (2016) Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Adv Energy Mater 6:1600372

    Article  Google Scholar 

  • deQuilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE, Ziffer ME, Snaith HJ, Ginger DS (2015) Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348(6235):683–686

    Article  Google Scholar 

  • deQuilettes DW, Zhang W, Burlakov VM, Graham DJ, Leijtens T, Osherov A, Bulović V, Snaith HJ, Ginger DS, Stranks SD (2016) Photo-induced halide redistribution in organic–inorganic perovskite films. Nat Comm 7(1):11683

    Article  Google Scholar 

  • Di Giacomo F, Razza S, Matteocci F, D’Epifanio A, Licoccia S, Brown TM, Di Carlo A (2014) High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J Power Sources 251:152–156

    Article  Google Scholar 

  • Do Sung S, Ojha DP, You JS, Lee J, Kim J, Lee WI (2015) 50 nm sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells. Nanoscale 7:8898–8906

    Article  Google Scholar 

  • Dong X, Hu H, Lin B, Ding J, Yuan N (2014) The effect of ALD-Zno layers on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures. Chem Commun 50:14405–14408

    Article  Google Scholar 

  • Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015a) Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347:967–970

    Article  Google Scholar 

  • Dong Q, Shi Y, Wang K, Li Y, Wang S, Zhang H, Xing Y, Du Y, Bai X, Ma T (2015b) Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C 119:10212–10217

    Article  Google Scholar 

  • Dong Q, Liu F, Wong MK, Djurišić AB, Ren Z, Shen Q, Ng A, Surya C, Chan WK (2016): Indium oxide-based perovskite solar cells. In: FH Teherani, DC Look, DJ Rogers (eds), Proceedings SPIE 9749, oxide-based materials and devices VII, vol 9749, p 97491S

    Google Scholar 

  • Duong T, Mulmudi HK, Shen H, Wu Y, Barugkin C, Mayon YO, Nguyen HT, Macdonald D, Peng J, Lockrey M (2016) Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy 30:330–340

    Article  Google Scholar 

  • Duong T, Wu Y, Shen H, Peng J, Fu X, Jacobs D, Wang E-C, Kho TC, Fong KC, Stocks M (2017) Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv Energy Mater 7:1700228

    Article  Google Scholar 

  • Fang Y, Dong Q, Shao Y, Yuan Y, Huang J (2015) Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat Photonics 9:679–686

    Article  Google Scholar 

  • Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14(5):2584–2590

    Article  Google Scholar 

  • Gangishetty MK, Scott RWJ, Kelly TL (2016) Effect of relative humidity on crystal growth, device performance and hysteresis in planar heterojunction perovskite solar cells. Nanoscale 8(12):6300–6307

    Article  Google Scholar 

  • Gharibzadeh S, Nejand BA, Moshaii A, Mohammadian N, Alizadeh AH, Mohammadpour R, Ahmadi V, Alizadeh A (2016) Two-step physical deposition of a compact CuI hole-transport layer and the formation of an interfacial species in perovskite solar cells. Chemsuschem 9:1929–1937

    Article  Google Scholar 

  • Gheno A, Thu Pham TT, Di Bin C, Bouclé J, Ratier B, Vedraine S (2017) Printable WO3 electron transporting layer for perovskite solar cells: influence on device performance and stability. Sol Energy Mater Sol Cells 161:347–354

    Google Scholar 

  • Gholipour S, Correa-Baena JP, Domanski K, Matsui T, Steier L, Giordano F, Tajabadi F, Tress W, Saliba M, Abate A, Ali AM, Taghavinia N, Grätzel M, Hagfeldt A (2016) Highly efficient and stable perovskite solar cells based on a low-cost carbon cloth. Adv Energy Mater 6

    Google Scholar 

  • Giesbrecht N, Schlipf J, Oesinghaus L, Binek A, Bein T, Müller-Buschbaum P, Docampo P (2016) Synthesis of perfectly oriented and micrometer-sized MAPbBr 3 perovskite crystals for thin-film photovoltaic applications. ACS Energy Lett 1(1):150–154

    Article  Google Scholar 

  • Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Gräetzel M, Nazeeruddin MK (2017) One-year stable perovskite solar cells by 2D/3D interface engineering. Nat Commun 8:15684

    Article  Google Scholar 

  • Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842

    Article  Google Scholar 

  • Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8(7):506–514

    Article  Google Scholar 

  • Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014a) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14:5561–5568

    Article  Google Scholar 

  • Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014b) Enhanced hole extraction in perovskite solar cells through carbon nanotubes. J Phys Chem Lett 5:4207–4212

    Article  Google Scholar 

  • Hadouchi W, Rousset J, Tondelier D, Geffroy B, Bonnassieux Y (2016) Zinc oxide as a hole blocking layer for perovskite solar cells deposited in atmospheric conditions. RSC Adv 6:67715–67723

    Article  Google Scholar 

  • Han GS, Chung HS, Kim DH, Kim BJ, Lee J-W, Park N-G, Cho IS, Lee J-K, Lee S, Jung HS (2015) Epitaxial 1D electron transport layers for high-performance perovskite solar cells. Nanoscale 7:15284–15290

    Article  Google Scholar 

  • Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG (2014a) Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photon 8:489–494

    Article  Google Scholar 

  • Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG (2014b) Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc 136:8094–8099

    Article  Google Scholar 

  • Hao F, Stoumpos CC, Liu Z, Chang RPH, Kanatzidis MG (2014c) Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J Am Chem Soc 136(46):16411–16419

    Article  Google Scholar 

  • Hashmi SG, Martineau D, Dar MI, Myllymaki TTT, Sarikka T, Ulla V, Zakeeruddin SM, Grätzel M (2017) High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment. J Mater Chem A 5:12060–12067

    Article  Google Scholar 

  • Hawash Z, Ono LK, Raga SR, Lee MV, Qi Y (2015) Air exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. Chem Mater 27:562–569

    Article  Google Scholar 

  • Hawash Z, Ono LK, Qi Y (2018) Recent advances in spiro-MeOTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells. Adv Mater Interfaces 5:1700623

    Article  Google Scholar 

  • He Q, Yao K, Wang X, Xia X, Leng S, Li F (2017) Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells. ACS Appl Mater Interfaces 9:41887–41897

    Article  Google Scholar 

  • Heo JH, Lee MH, Han HJ, Patil BR, Yu JS, Im SH (2016) Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J Mater Chem A 4:1572–1578

    Article  Google Scholar 

  • Hirst LC, Ekins-Daukes NJ (2011) Fundamental losses in solar cells. Prog Photovolt 19(3):286–293

    Article  Google Scholar 

  • Hodes G (2013) Perovskite-based solar cells. Science 342:317–318

    Article  Google Scholar 

  • Hoke ET, Slotcavage DJ, Dohner ER, Bowring AR, Karunadasa HI, McGehee MD (2015) Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem Sci 6(1):613–617

    Article  Google Scholar 

  • Hong S, Han A, Lee EC, Ko K, Park J, Song H, Han M-H, Han C (2015) A facile and low-cost fabrication of TiO2 compact layer for efficient perovskite solar cells. Curr Appl Phys 15:574–579

    Article  Google Scholar 

  • Hou Y, Quiroz COR, Scheiner S, Chen W, Stubhan T, Hirsch A, Halik M, Brabec CJ (2015) Low‐temperature and hysteresis‐free electron‐transporting layers for efficient, regular, and planar structure perovskite solar cells. Adv Energy Mater 5:1501056

    Google Scholar 

  • Hou XM, Hu Y, Liu HW, Mei AY, Li X, Duan M, Zhang GA, Rong YG, Han HW (2017) Effect of guanidinium on mesoscopic perovskite solar cells. J Mater Chem A 5:73–78

    Google Scholar 

  • https://www.iea.org/reports/world-energy-outlook-2019

  • Hu X, Zhang XD, Liang L, Bao J, Li S, Yang WL, Xie Y (2014a) High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater 24(46):7373–7380

    Article  Google Scholar 

  • Hu L, Peng J, Wang WW, Xia Z, Yuan JY, Lu JL, Huang XD, Ma WL, Song HB, Chen W, Cheng YB, Tang J (2014b) Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics 1:547–553

    Article  Google Scholar 

  • Hu L, Wang W, Liu H, Peng J, Cao H, Shao G, Xia Z, Ma W, Tang J (2015) PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells. J Mater Chem A 3:515–518

    Article  Google Scholar 

  • Hu C, Bai Y, Xiao S, Zhang T, Meng XY, Ng WK, Yang Y, Wong KS, Chen H, Yang S (2017a) Tuning the A-site cation composition of FA perovskites for efficient and stable NiO-based p-i-n perovskite solar cells. J Mater Chem A 5:21858–21865

    Article  Google Scholar 

  • Hu W, Liu T, Yin X, Liu H, Zhao X, Luo S, Guo Y, Yao Z, Wang J, Wang N, Lin H, Guo Z (2017b) Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. J Mater Chem A 5:1434–1441

    Article  Google Scholar 

  • Hua Y, Zhang J, Xu B, Liu P, Cheng M, Kloo L, Johansson EMJ, Sveinbjornsson K, Aitola K, Boschloo G, Sun L (2016) Facile synthesis of fluorene-based hole transport materials for highly efficient perovskite solar cells and solid-state dye-sensitized solar cells. Nano Energy 26:108–113

    Article  Google Scholar 

  • Huang Z, Zeng X, Wang H, Zhang W, Li Y, Wang M, Cheng Y-B, Chen W (2014) Enhanced performance of p-type dye sensitized solar cells based on mesoporous Ni1−xMgxO ternary oxide films. RSC Adv 4:60670–60674

    Article  Google Scholar 

  • Huang L, Hu Z, Xu J, Zhang K, Zhang J, Zhang J, Zhu Y (2016a) Efficient and stable planar perovskite solar cells with a non hygroscopic small molecule oxidant doped hole transport layer. Electrochim Acta 196:328–336

    Article  Google Scholar 

  • Huang Y, Zhu J, Ding Y, Chen S, Zhang C, Dai S (2016b) TiO2 sub-microsphere film as scaffold layer for efficient perovskite solar cells. ACS Appl Mater Interfaces 8:8162–8167

    Article  Google Scholar 

  • Huang J, Xu P, Liu J, You X-Z (2017) Sequential introduction of cations deriving large-grain CsxFA1−xPbI3 thin film for planar hybrid solar cells, insight into phase-segregation and thermal-healing behavior. Small 13:1603225

    Article  Google Scholar 

  • Huangfu M, Shen Y, Zhu G, Xu K, Cao M, Gu F, Wang L (2015) Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer. Appl Surf Sci 357:2234–2240

    Article  Google Scholar 

  • Hwang SH, Roh J, Lee J, Ryu J, Yun J, Jang J (2014) Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells. J Mater ChemA 2:16429–16433

    Article  Google Scholar 

  • Im J-H, Lee C-R, Lee J-W, Park S-W, Park N-G (2013) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093

    Google Scholar 

  • Im J, Stoumpos CC, Jin H, Freeman AJ, Kanatzidis MG (2015) Antagonism between spin-orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1−xPbxI3. J Phys Chem Lett 6:3503–3509

    Article  Google Scholar 

  • International Energy Agency (2019) World Energy Outlook 2017. Technical report, 2017

    Google Scholar 

  • Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Chou KW, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotech 7:577–582

    Article  Google Scholar 

  • Isikgor FH, Li B, Zhu H, Xu Q, Ouyang J (2016) High performance planar perovskite solar cells with a perovskite of mixed organic cations and mixed halides, MA1−xFAxPbI3−yCly. J Mater Chem A 4:12543–12553

    Article  Google Scholar 

  • Ito S, Tanaka S, Vahlman H, Nishino H, Manabe K, Lund P (2014a) Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: structural control and photoaging effects. ChemPhysChem 15:1194–1200

    Article  Google Scholar 

  • Ito S, Tanaka S, Manabe K, Nishino H (2014b) Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C 118:16995–17000

    Article  Google Scholar 

  • Ito S, Tanaka S, Nishino H (2015) Lead-halide perovskite solar cells by CH3NH3I dripping on PbI2-CH3NH3I-DMSO precursor layer for planar and porous structures using CuSCN hole-transporting material. J Phys Chem Lett 6:881–886

    Article  Google Scholar 

  • Jacobsson TJ, Correa-Baena J-P, Pazoki M, Saliba M, Schenk K, Gratzel M, Hagfeldt A (2016) Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ Sci 9:1706–1724

    Article  Google Scholar 

  • Jena AK, Kulkarni A, Miyasaka T (2019) Halide perovskite photovoltaics: background, status, and future prospects. Chem Rev 119(5):3036–3103

    Article  Google Scholar 

  • Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC (2013) CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater 25:3727–3732

    Article  Google Scholar 

  • Jeng JY, Chen KC, Chiang TY, Lin PY, Tsai TD, Chang YC, Guo TF, Chen P, Wen TC, Hsu YJ (2014) Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater 26:4107–4113

    Article  Google Scholar 

  • Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13(9):897–903

    Article  Google Scholar 

  • Jeon I, Chiba T, Delacou C, Guo Y, Kaskela A, Reynaud O, Kauppinen EI, Maruyama S, Matsuo Y (2015a) Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett 15:6665–6671

    Article  Google Scholar 

  • Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI (2015b) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535):476

    Article  Google Scholar 

  • Jeon I, Seo S, Sato Y, Delacou C, Anisimov A, Suenaga K, Kauppinen EI, Maruyama S, Matsuo Y (2017) Perovskite solar cells using carbon nanotubes both as cathode and as anode. J Phys Chem C 121:25743–25749

    Article  Google Scholar 

  • Jiang H, Kloc C (2013) Single-crystal growth of organic semiconductors. MRS Bull 38(1):28–33

    Article  Google Scholar 

  • Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J (2016) Erratum: corrigendum: enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy 2:16177

    Article  Google Scholar 

  • Jiang X, Yu Z, Zhang Y, Lai J, Li J, Gurzadyan GG, Yang X, Sun L (2017) High-performance regular perovskite solar cells employing low-cost poly(ethylenedioxythiophene) as a hole-transporting material. Sci Rep 7:42564

    Article  Google Scholar 

  • Johnston MB, Herz LM (2016) Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc Chem Res 49(1):146–154

    Article  Google Scholar 

  • Jung JW, Chueh CC, Jen AKY (2015a) High-performance semi transparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material. Adv Energy Mater 5:1500486

    Article  Google Scholar 

  • Jung JW, Chueh CC, Jen AK (2015b) A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv Mater 27:7874–7880

    Article  Google Scholar 

  • Ke W, Fang G, Wang J, Qin P, Tao H, Lei H, Liu Q, Dai X, Zhao X (2014) Perovskite solar cell with an efficient TiO2 compact film. ACS Appl Mater Interfaces 6:15959–15965

    Article  Google Scholar 

  • Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y (2015a) Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc 137:6730–6733

    Article  Google Scholar 

  • Ke W, Zhao D, Cimaroli AJ, Grice CR, Qin P, Liu Q, Xiong L, Yan Y, Fang G (2015b) Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. J Mater Chem A 3:24163–24168

    Article  Google Scholar 

  • Ke W, Zhao D, Grice CR, Cimaroli AJ, Ge J, Tao H, Lei H, Fang G, Yan Y (2015c) Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers. J Mater Chem A 3:17971–17976

    Article  Google Scholar 

  • Ke W, Zhao D, Xiao C, Wang C, Cimaroli AJ, Grice CR, Yang M, Li Z, Jiang C-S, Al-Jassim M, Zhu K, Kanatzidis MG, Fang G, Yan Y (2016) Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. J Mater Chem A 4:14276–14283

    Article  Google Scholar 

  • Ke WJ, Stoumpos CC, Kanatzidis MG (2019) “Unleaded” perovskites: Status Quo and future prospects of tin-based perovskite solar cells. Adv Mater 31(47):1803230

    Article  Google Scholar 

  • Kegelmann L, Wolff CM, Awino C, Lang F, Unger EL, Korte L, Dittrich T, Neher D, Rech B, Albrecht S (2017) It takes two to Tango—double-layer selective contacts in perovskite solar cells for improved device performance and reduced hysteresis. ACS Appl Mater Interfaces 9:17245–17255

    Article  Google Scholar 

  • Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(1):591

    Article  Google Scholar 

  • Kim H-B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim JY (2014a) Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 6(12):6679–6683

    Article  Google Scholar 

  • Kim JH, Liang PW, Williams ST, Cho N, Chueh CC, Glaz MS, Ginger DS, Jen AKY (2014b) High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater 27:695–701

    Article  Google Scholar 

  • Kim J, Kim G, Kim TK, Kwon S, Back H, Lee J, Lee SH, Kang H, Lee K (2014c) Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. J Mater Chem A 2:17291–17296

    Article  Google Scholar 

  • Kim JH, Liang PW, Williams ST, Cho N, Chueh CC, Glaz MS, Ginger DS, Jen AK (2015) High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater 27:695–701

    Article  Google Scholar 

  • Kim J, Kim HP, Teridi MAM, Yusoff ARbM, Jang J (2016) Bandgap tuning of mixed organic cation utilizing chemical vapor deposition process. Sci Rep 6:37378

    Google Scholar 

  • Kim H-S, Seo J-Y, Xie H, Lira-Cantu M, Zakeeruddin SM, Grätzel M, Hagfeldt A (2017) Effect of Cs-incorporated NiOx on the performance of perovskite solar cells. ACS Omega 2:9074–9079

    Article  Google Scholar 

  • Kogo A, Numata Y, Ikegami M, Miyasaka T (2015) Nb2O5 blocking layer for high open-circuit voltage perovskite solar cells. Chem Lett 44:829–830

    Article  Google Scholar 

  • Kohnehpoushi S, Nazari P, Nejand BA, Eskandari M (2018) MoS2: a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells. Nanotechnology 29:205201

    Article  Google Scholar 

  • Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  Google Scholar 

  • Kolny-Olesaik J, Weller H (2013) Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl Mater Interfaces 5:12221–12237

    Article  Google Scholar 

  • Ku Z, Rong Y, Xu M, Liu T, Han H (2013) Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci Rep 3:3132

    Article  Google Scholar 

  • Kumar MH, Yantara N, Dharani S, Gräetzel M, Mhaisalkar S, Boix PP, Mathews N (2013) Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun 49:11089–11091

    Article  Google Scholar 

  • Kwon YS, Lim J, Yun H-J, Kim Y-H, Park T (2014) A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy Environ Sci 7(4):1454–1460

    Article  Google Scholar 

  • Kwon U, Kim BG, Nguyen DC, Park JH, Ha NY, Kim SJ, Ko SH, Lee S, Lee D, Park HJ (2016) Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells. Sci Rep 6:30759

    Article  Google Scholar 

  • Lang F, Gluba MA, Albrecht S, Rappich J, Korte L, Rech B, Nickel NH (2015) Perovskite solar cells with large-area CVD-graphene for tandem solar cells. J Phys Chem Lett 6:2745–2750

    Article  Google Scholar 

  • Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647

    Article  Google Scholar 

  • Lee JW, Lee TY, Yoo PJ, Grätzel M, Mhaisalkar S, Park NG (2014) Rutile TiO2-based perovskite solar cells. J Mater Chem A 2:9251–9259

    Article  Google Scholar 

  • Lee JW, Kim DH, Kim HS, Seo SW, Cho SM, Park NG (2015a) Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater 5(20):1501310

    Article  Google Scholar 

  • Lee J, Menamparambath MM, Hwang JY, Baik S (2015b) Hierarchically structured hole transport layers of spiro-OMeTAD and multiwalled carbon nanotubes for perovskite solar cells. Chem Sus Chem 8:2358–2362

    Article  Google Scholar 

  • Lee JW, Kim DH, Kim HS, Seo SW, Cho SM, Park NG (2015c) Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater 5:1501310

    Article  Google Scholar 

  • Lee K, Yoon C, Noh J, Jang J (2016) Morphology-controlled mesoporous SiO2 nanorods for efficient scaffolds in organo-metal halide perovskite solar cells. Chem Commun 52:4231–4234

    Article  Google Scholar 

  • Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ (2013) Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun 4:2885

    Article  Google Scholar 

  • Li Z (2015) Stable perovskite solar cells based on WO3 nanocrystals as hole transport layer. Chem Lett 44:1140–1141

    Article  Google Scholar 

  • Li WZ, Dong HP, Guo XD, Li N, Li JW, Niu GD, Wang LD (2014a) Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J Mater Chem A 2:20105–20111

    Article  Google Scholar 

  • Li Z, Kulkarni SA, Boix PP, Shi E, Cao A, Fu K, Batabyal SK, Zhang J, Xiong Q, Wong LH, Mathews N, Mhaisalkar SG (2014b) Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8:6797–6804

    Article  Google Scholar 

  • Li Y, Zhu J, Huang Y, Wei J, Liu F, Shao Z, Hu L, Chen S, Yang S, Tang J, Yao J, Dai S (2015a) Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots. Nanoscale 7:9902–9907

    Article  Google Scholar 

  • Li Y, Zhu J, Huang Y, Liu F, Lv M, Chen SH, Hu LH, Tang JW, Yao JX, Dai SY (2015b) Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells. RSC Adv 5:28424–28429

    Article  Google Scholar 

  • Li M, Wang Z-K, Yang Y-G, Hu Y, Feng S-L, Wang J-M, Gao X-Y, Liao L-S (2016a) Copper salts doped spiro-OMeTAD for high-performance perovskite solar cells. Adv Energy Mater 6:1601156

    Article  Google Scholar 

  • Li H, Cao K, Cui J, Liu S, Qiao X, Shen Y, Wang M (2016b) 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale 8:6379–6385

    Google Scholar 

  • Li Z, Yang M, Park J-S, Wei S-H, Berry JJ, Zhu K (2016c) Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater 28:284–292

    Article  Google Scholar 

  • Li G, Zhang T, Guo N, Xu F, Qian X, Zhao Y (2016d) Ion-exchange-induced 2D–3D conversion of HMA1−xFAxPbI3Cl perovskite into a high-quality MA1−xFAxPbI3 perovskite. Angew Chem, Int Ed 55:13460–13464

    Google Scholar 

  • Li Z, Tinkham J, Schulz P, Yang M, Kim DH, Berry J, Sellinger A, Zhu K (2017a) Acid additives enhancing the conductivity of spiro-OMeTAD toward high-efficiency and hys-teresis-less planar perovskite solar cells. Adv Energy Mater 7:1601451

    Article  Google Scholar 

  • Li J, Yao JX, Liao XY, Yu RL, Xia HR, Sun WT, Peng LM (2017b) A contact study in hole conductor free perovskite solar cells with low temperature processed carbon electrodes. RSC Adv 7:20732–20737

    Article  Google Scholar 

  • Liang L, Huang Z, Cai L, Chen W, Wang B, Chen K, Bai H, Tian Q, Fan B (2014) Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells. ACS Appl Mater Interfaces 6:20585–20589

    Article  Google Scholar 

  • Liang PW, Chueh CC, Williams ST, Jen AKY (2015) Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv Energy Mater 5:1402321

    Article  Google Scholar 

  • Liao W-Q, Zhang Y, Hu C-L, Mao J-G, Ye H-Y, Li P-F, Huang SD, Xiong R-G (2015) A lead-halide perovskite molecular ferroelectric semiconductor. Nat Commun 6(1):7338

    Article  Google Scholar 

  • Liao W, Zhao D, Yu Y, Shrestha N, Ghimire K, Grice CR, Wang C, Xiao Y, Cimaroli AJ, Ellingson RJ, Podraza NJ, Zhu K, Xiong R-G, Yan Y (2016) Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J Am Chem Soc 138:12360–12363

    Article  Google Scholar 

  • Ling X, Yuan J, Liu D, Wang Y, Zhang Y, Chen S, Wu H, Jin F, Wu F, Shi G, Tang X, Zheng J, Liu S (Frank), Liu Z, Ma W (2015) Room-temperature processed Nb2O5 as the electron-transporting layer for efficient planar perovskite solar cells. ACS Appl Mater Interfaces 9:23181–23188

    Google Scholar 

  • Liu D, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 8:133–138

    Article  Google Scholar 

  • Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398

    Article  Google Scholar 

  • Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, Yu F, Zhang X, Zhao C, Liu S (2015a) Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv Mater 27(35):5176–5183

    Article  Google Scholar 

  • Liu ZH, Zhang M, Xu XB, Cai FS, Yuan HL, Bu LL, Li WH, Zhu AL, Zhao ZX, Wang MK, Cheng YB, He HS (2015b) NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. J Mater Chem A 3:24121–24127

    Article  Google Scholar 

  • Liu Z, Zhang M, Xu X, Bu L, Zhang W, Li W, Zhao Z, Wang M, Cheng YB, He H (2015c) p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans 44:3967–3973

    Article  Google Scholar 

  • Liu T, Liu L, Hu M, Yang Y, Zhang L, Mei A, Han H (2015d) Critical parameters inTiO2/ZrO2/Carbon-based mesoscopic perovskite solar cell. J Power Sources 293:533–538

    Article  Google Scholar 

  • Liu T, Kim D, Han H, Yusoff AR, Jang J (2015e) Fine-tuning optical and electronic properties of graphene oxide for highly efficient perovskite solar cells. Nanoscale 7:10708–10718

    Article  Google Scholar 

  • Liu J, Gao C, Luo L, Ye Q, He X, Ouyang L, Guo X, Zhuang D, Liao C, Mei J, Lau W (2015f) Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. J Mater Chem A 3:11750–11755

    Article  Google Scholar 

  • Liu J, Shirai Y, Yang X, Yue Y, Chen W, Wu Y, Islam A, Han L (2015g) High-quality mixed-organic-cation perovskites from a phase-pure non-stoichiometric intermediate (FAI)1−x-PbI2 for solar cells. Adv Mater 27:4918–4923

    Article  Google Scholar 

  • Liu JW, Pathak SK, Sakai N, Sheng R, Bai S, Wang ZP, Snaith HJ (2016a) Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter. Adv Mater Interfaces 3:1600571

    Article  Google Scholar 

  • Liu ZY, Sun B, Shi TL, Tang ZR, Liao GL (2016b) Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS. J Mater Chem A 4:10700–10709

    Article  Google Scholar 

  • Liu Z, Shi T, Tang Z, Sun B, Liao G (2016c) Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity. Nanoscale 8:7017–7023

    Article  Google Scholar 

  • Liu T, Yu L, Liu H, Hou Q, Wang C, He H, Li J, Wang N, Wang J, Guo Z (2017a) Ni nanobelts induced enhancement of hole transport and collection for high efficiency and ambient stable mesoscopic perovskite solar cells. J Mater Chem A 5:4292–4299

    Article  Google Scholar 

  • Liu S, Cao K, Li H, Song J, Han J, Shen Y, Wang M (2017b) Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. Sol Energy 144:158–165

    Article  Google Scholar 

  • Liu T, Zong Y, Zhou Y, Yang M, Li Z, Game OS, Zhu K, Zhu R, Gong Q, Padture NP (2017c) High-performance formamidinium-based perovskite solar cells via microstructure- mediated δ-to-α phase transformation. Chem Mater 29:3246–3250

    Article  Google Scholar 

  • Lu H, Ma Y, Gu B, Tian W, Li L (2015) Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. J Mater Chem A 3:16445–16452

    Article  Google Scholar 

  • Luo Q, Zhang Y, Liu CY, Li JB, Wang N, Lin H (2015) Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. J Mater Chem A 3:15996–16004

    Article  Google Scholar 

  • Luo Q, Ma H, Zhang Y, Yin XW, Yao ZB, Wang N, Li JB, Fan SS, Jiang KL, Lin H (2016) Cross-stacked super aligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. J Mater Chem A 4:5569–5577

    Article  Google Scholar 

  • Luo H, Lin X, Hou X, Pan L, Huang S, Chen X (2017a) Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano- Micro Lett 9:39

    Article  Google Scholar 

  • Luo Q, Chen H, Lin Y, Du H, Hou Q, Hao F, Wang N, Guo Z, Huang J (2017b) Discrete Iron(III) oxide nanoislands for efficient and photostable perovskite solar cells. Adv Funct Mater 1702090:1–9

    Google Scholar 

  • Lv M, Zhu J, Huang Y, Li Y, Shao Z, Xu Y, Dai S (2015) Colloidal CuInS2 quantum dots as inorganic hole-transporting material in perovskite solar cells. ACS Appl Mater Interfaces 7:17482–17488

    Article  Google Scholar 

  • Ma J, Zheng X, Lei H, Ke W, Chen C, Chen Z, Yang G, Fang G (2017) Highly efficient and stable planar perovskite solar cells with large-scale manufacture of E-beam evaporated SnO2 toward commercialization. Sol RRL 1:1700118

    Article  Google Scholar 

  • Madhavan VE, Zimmermann I, Roldan-Carmona C, Grancini G, Buffiere M, Belaidi A, Nazeeruddin MK (2016) Copper thiocyanate inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Energy Lett 1:1112–1117

    Article  Google Scholar 

  • Mahmood K, Swain BS, Amassian A (2014) Double-layered ZnO nanostructures for efficient perovskite solar cells. Nanoscale 6:14674–14678

    Article  Google Scholar 

  • Mahmood K, Swain BS, Kirmani AR, Amassian A (2015a) Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material. J Mater Chem A 3:9051–9057

    Article  Google Scholar 

  • Mahmood K, Swain BS, Amassian A (2015b) 16.1% Efficient hysteresis‐free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays. Adv Energy Mater 5:1500568

    Google Scholar 

  • Mahmud MA, Elumalai NK, Upama MB, Wang D, Wright M, Chan KH, Xu C, Haque F, Uddin A (2016) Single versus mixed organic cation for low temperature processed perovskite solar cells. Electrochim Acta 222:1510–1521

    Article  Google Scholar 

  • Mali SS, Shim CS, Park HK, Heo J, Patil PS, Hong CK (2015a) Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells. Chem Mater 27:1541–1551

    Google Scholar 

  • Mali SS, Su Shim C, Kook Hong C (2015b) Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Sci Rep 5:11424

    Article  Google Scholar 

  • Mamun AA, Ava TT, Zhang K, Baumgart H, Namkoong G (2017) New PCBM/carbon based electron transport layer for perovskite solar cells. Phys Chem Chem Phys 19:17960–17966

    Article  Google Scholar 

  • Matsui T, Seo J-Y, Saliba M, Zakeeruddin SM, Grätzel M (2017) Room-temperature formation of highly crystalline multication perovskites for efficient, low-cost solar cells. Adv Mater 29:1606258

    Google Scholar 

  • McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Hörantner MT, Haghighirad A, Sakai N, Korte L, Rech B (2016) A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351:151–155

    Google Scholar 

  • Meng L, You J, Guo T-F, Yang Y (2016) Recent advances in the inverted planar structure of perovskite solar cells. Acc Chem Res 49(1):155–165

    Article  Google Scholar 

  • Mielczarek K, AA (2014) Perovskite based hybrid solar cells with transparent carbon nanotube electrodes, MRS Proc, 1667, Mrss14-1667-b09-82

    Google Scholar 

  • Morton O (2006) Solar energy: a new day dawning? Silicon Valley sunrise. Nature 443(7107):19–22

    Article  Google Scholar 

  • Motti SG, Gandini M, Barker AJ, Ball JM, Srimath Kandada AR, Petrozza A (2016) Photoinduced emissive trap states in lead halide perovskite semiconductors. ACS Energy Lett 1(4):726–730

    Article  Google Scholar 

  • Murugadoss G, Kanda H, Tanaka S, Nishino H, Ito S, Imahoric H, Umeyama T (2016) An efficient electron transport material of tin oxide for planar structure perovskite solar cells. J Power Sources 307:891–897

    Article  Google Scholar 

  • Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Del Rio Castillo AE, Di Carlo A, Bonaccorso F (2018) MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20. ACS Nano 12(11):10736–10754

    Article  Google Scholar 

  • Nazari FAP, Abdollahi Nejand B, Ahmadi V, Payandeh M, Salavati-Niasar M (2017) Physicochemical interface engineering of CuI/Cu as advanced potential hole-transporting materials/metal contact couples in hysteresis-free ultralow-cost and large-area perovskite solar cells. J Phys Chem C 121:21935–21944

    Article  Google Scholar 

  • Nejand BA, Ahmadi V, Gharibzadeh S, Shahverdi HR (2016) Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells. Chemsuschem 9:302–313

    Article  Google Scholar 

  • Nie W, Tsai H, Blancon JC, Liu F, Stoumpos CC, Traore B, Kepenekian M, Durand O, Katan C, Tretiak S, Crochet J, Ajayan PM, Kanatzidis M, Even J, Mohite AD (2018) Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide. Adv Mater 30:1703879

    Article  Google Scholar 

  • Niu G, Yu H, Li J, Wang D, Wang L (2016) Controlled orientation of perovskite films through mixed cations toward high performance perovskite solar cells. Nano Energy 27:87–94

    Article  Google Scholar 

  • Niu G, Li W, Li J, Liang X, Wang L (2017) Enhancement of Thermal Stability for Perovskite Solar Cells through Cesium Doping. RSC Adv 7:17473–17479

    Google Scholar 

  • Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, Snaith HJ (2014) Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 8(10):9815–9821

    Article  Google Scholar 

  • Nouri E, Mohammadi MR, Lianos P (2017) Inverted perovskite solar cells basedon lithium-functionalized graphene oxide as an electron-transporting layer. Chem Commun 53:1630–1633

    Article  Google Scholar 

  • NREL solar energy chart: https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf

  • O’Regan B, Schwartz DT, Zakeeruddin SM, Grätzel M (2000) Electrodeposited nanocomposite n–p heterojunctions for solid-state dye-sensitized photovoltaics. Adv Mater 12:1263–1267

    Article  Google Scholar 

  • Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey SS, Ma T, Hayase S (2014) CH3NH3SnxPb(1−x)I3 Perovskite Solar Cells Covering up to 1060 nm. J Phys Chem Lett 5:1004–1011

    Article  Google Scholar 

  • Oh LS, Kim DH, Lee JA, Shin SS, Lee J, Park IJ, Ko MJ, Park N, Pyo SG, Hong KS, Kim JY (2015) Zn2SnO4-based photoelectrodes for organolead halide perovskite solar cells. J Phys Chem C 118:22991–22994

    Article  Google Scholar 

  • Ono LK, Qi Y (2016) Surface and interface aspects of organometal halide perovskite materials and solar cells. J Phys Chem Lett 7(22):4764–4794

    Article  Google Scholar 

  • Ono LK, Raga SR, Remeika M, Winchester AJ, Gabe A, Qi Y (2015) Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions. J Mater Chem A 3(30):15451–15456

    Article  Google Scholar 

  • Ou QD, Li C, Wang QK, Li YQ, Tang JX (2017) Recent advances in energetics of metal halide perovskite interfaces. Adv Mater Interfaces 4:1600694

    Article  Google Scholar 

  • Pae SR, Byun S, Kim J, Kim M, Gereige I, Shin B (2018) Improving uniformity and reproducibility of hybrid perovskite solar cells via a low-temperature vacuum deposition process for NiOx hole transport layers. ACS Appl Mater Interfaces 10:534–540

    Article  Google Scholar 

  • Pan ZX, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong XH, Bisquert J (2014) High-efficiency “green” quantum dot solar cells. J Am Chem Soc 136:9203–9210

    Article  Google Scholar 

  • Park NG (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18:65–72

    Article  Google Scholar 

  • Park BW, Seok SI (2019) Intrinsic instability of inorganic-organic hybrid halide perovskite materials. Adv Mater 31(20):1805337

    Article  Google Scholar 

  • Park IJ, Park MA, Kim DH, Park GD, Kim BJ, Son HJ, Ko MJ, Lee DK, Park T, Shin H, Park N-G, Jung HS, Young J (2015a) New hybrid hole extraction layer of perovskite solar cells with a planar pin geometry. J Phys Chem 119:27285–27290

    Google Scholar 

  • Park JH, Seo J, Park S, Shin SS, Kim YC, Jeon NJ, Shin HW, Ahn TK, Noh JH, Yoon SC, Hwang CS, Seok SI (2015b) Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv Mater 27:4013–4019

    Article  Google Scholar 

  • Park IJ, Park MA, Kim DH, Park GD, Kim BJ, Son HJ, Ko MJ, Lee D-K, Park T, Shin H, Park N-G, Jung HS, Kim JY (2015c) New hybrid hole extraction layer of perovskite solar cells with a planar p-i-n geometry. J Phys Chem C 119:27285–27290

    Article  Google Scholar 

  • Park IJ, Kang G, Park MA, Kim JS, Seo SW, Kim DH, Zhu K, Park T, Kim JY (2017a) Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiOx hole-extraction layer. Chemsuschem 10:2660–2667

    Article  Google Scholar 

  • Park YH, Jeong I, Bae S, Son HJ, Lee P, Lee J, Lee C-H, Ko MJ (2017b) Inorganic rubidium cation as an enhancer for photovoltaic performance and moisture stability of HC(NH2)2PbI3 perovskite solar cells. Adv Funct Mater 27:1605988

    Article  Google Scholar 

  • Pathak SK, Abate A, Ruckdeschel P, Roose B, Gödel KC, Vaynzof Y, Santhala A, Watanabe SI, Hollman DJ, Noel N, Sepe A, Wiesner U, Friend R, Snaith HJ, Steiner U (2014) Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2. Adv Funct Mater 24:6046–6055

    Article  Google Scholar 

  • Pattanasattayavong P, Gross NY, Zhao K, Ndjawa GON, Li J, Yan F, O’Regan BC, Amassian A, Anthopoulo TD (2013a) Hole‐transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature. Adv Mater 25:1504–1509

    Google Scholar 

  • Pattanasattayavong P, Ndjawa GON, Zhao K, Chou KW, Gross NY, O’Regan BC, Amassian A, Anthopoulos TD (2013b) Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chem Commun 49:4154–4156

    Article  Google Scholar 

  • Paulo S, Stoicaa G, Cambaraua W, Martinez-Ferrerob E, Palomares E (2016) Carbon quantum dots as new hole transport material for perovskite solar cells. Synth Met 222:17–22

    Article  Google Scholar 

  • Pellet N, Gao P, Gregori G, Yang T-Y, Nazeeruddin MK, Maier J, Grätzel M (2014) Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew Chem Int Ed 53:3151–3157

    Google Scholar 

  • Petrus ML, Schlipf J, Li C, Gujar TP, Giesbrecht N, Muller-Buschbaum P, Thelakkat M, Bein T, Huttner S, Docampo P (2017) Capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Adv. Energy Mater 7(16):1700264

    Article  Google Scholar 

  • Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin MK, Grätzel M (2014a) Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun 5:3834

    Google Scholar 

  • Qin P, Domanski AL, Chandiran AK, Berger R, Butt HJ, Darm MI, Moehl T, Tetreault N, Gao P, Ahmad S, Nazeeruddin MK, Grätzel M (2014b) Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells. Nanoscale 6:1508–1514

    Article  Google Scholar 

  • Qin PL, Lei HW, Zheng XL, Liu Q, Tao H, Yang G, Ke WJ, Xiong LB, Qin MC, Zhao XZ, Fang GJ (2016) Copper-doped chromium oxide hole-transporting layer for perovskite solar cells: interface engineering and performance improvement. Adv Mater Interfaces 3:1500799

    Article  Google Scholar 

  • Qiu L, Deng J, Lu X, Yang Z, Peng H (2014) Integrating perovskite solar cells into a flexible fiber. Angew Chem Int Ed Engl 53:10425–10428

    Article  Google Scholar 

  • Quan LN, Yuan M, Comin R, Voznyy O, Beauregard EM, Hoogland S, Buin A, Kirmani AR, Zhao K, Amassian A, Kim DH, Sargent EH (2016) Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc 138:2649–2655

    Article  Google Scholar 

  • Rao H-S, Chen B-X, Li W-G, Xu Y-F, Chen H-Y, Kuang D-B, Su C-Y (2015) Improving the extraction of photogenerated electrons with SnO2 nanocolloids for efficient planar perovskite solar cells. Adv Funct Mater 25:7200–7207

    Article  Google Scholar 

  • Rao H, Sun W, Ye S, Yan W, Li Y, Peng H, Liu Z, Bian Z, Huang C (2016a) Solution-Processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells. ACS Appl Mater Interfaces 8:7800–7805

    Article  Google Scholar 

  • Rao H, Ye S, Sun W, Yan W, Li Y, Peng HT, Liu Z, Bian Z, Li Y, Huang C (2016b) A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method. Nanoenergy 27:51–57

    Google Scholar 

  • Rehman W, McMeekin DP, Patel JB, Milot RL, Johnston MB, Snaith HJ, Herz LM (2017) Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ Sci 10(1):361–369

    Article  Google Scholar 

  • Reyna Y, Salado M, Kazim S, Pérez-Tomas A, Ahmad S, Lira-Cantu M (2016) Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy 30:570–579

    Google Scholar 

  • Richardson G, O’Kane SEJ, Niemann RG, Peltola TA, Foster JM, Cameron PJ, Walker AB (2016) Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy Environ Sci 9(4):1476–1485

    Google Scholar 

  • Rong Y, Ku Z, Mei A, Liu T, Xu M, Ko S, Li X, Han H (2014) Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes. J Phys Chem Lett 5:2160–2164

    Article  Google Scholar 

  • Rong Y, Hou X, Hu Y, Mei A, Liu L, Wang P, Han H (2017) Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat Commun 8:14555

    Article  Google Scholar 

  • Ryu S, Seo J, Shin SS, Kim YC, Jeon NJ, Noh JH, Il Seok S (2015) Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. J Mater Chem A 3:3271–3275

    Article  Google Scholar 

  • Ryu J, Lee K, Yun J, Yu H, Lee J, Jang J (2017) Paintable carbon-based perovskite solar cells with engineered perovskite/carbon interface using carbon nanotubes dripping method. Small 13:1701225

    Article  Google Scholar 

  • Sahli F, Werner J, Kamino BA, Brauninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Leon JJD, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C (2018) Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater 17(9):820

    Google Scholar 

  • Saidaminov MI, Abdelhady AL, Murali B, Alarousu E, Burlakov VM, Peng W, Dursun I, Wang L, He Y, Maculan G, Goriely A, Wu T, Mohammed OF, Bakr OM (2015) High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun 6(1):7586

    Article  Google Scholar 

  • Saidaminov MI, Kim J, Jain A, Quintero-Bermudez R, Tan H, Long G, Tan F, Johnston A, Zhao Y, Voznyy O, Sargent EH (2018) Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat Energy 3(8):648–654

    Article  Google Scholar 

  • Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A (2016a) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997

    Article  Google Scholar 

  • Saliba M, Matsui T, Domanski K, Seo J-Y, Ummadisingu A, Zakeeruddin SM, Correa-Baena J-P, Tress WR, Abate A, Hagfeldt A, Grätzel M (2016b) Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354:206–209

    Article  Google Scholar 

  • Saliba M, Matsui T, Domanski K, Seo J-Y, Ummadisingu A, Zakeeruddin SM, Correa-Baena J-P, Tress WR, Abate A, Hagfeldt A, Grätzel M (2016c) Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309):206–209

    Article  Google Scholar 

  • Sanehira EM, Marshall AR, Christians JA, Harvey SP, Ciesielski PN, Wheeler LM, Schulz P, Lin LY, Beard MC, Luther JM (2017) Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci Adv 3:eaao4204

    Google Scholar 

  • Santra PK, Nair PV, Thomas KG, Kamat PV (2013) CuInS2-sensitized quantum dot solar cell. Electrophoretic deposition, excited-state dynamics, and photovoltaic performance. J Phys Chem Lett 4:722–729

    Google Scholar 

  • Sarkar A, Jeon NJ, Noh JH, Seok SI (2014) Well-organized mesoporous TiO2 photoelectrodes by block copolymer-induced Sol-Gel assembly for inorganic-organic hybrid perovskite solar cells. J Phys Chem C 118:16688–16693

    Article  Google Scholar 

  • Sepalage GA, Meyer S, Pascoe A, Scully AD, Huang F, Bach U, Cheng Y-B, Spiccia L (2015) Copper (I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J-V hysteresis. Adv Funct Mater 25:5650–5661

    Article  Google Scholar 

  • Shao S, Liu F, Xie Z, Wang L (2010) High-efficiency hybrid polymer solar cells with inorganic P- and N-type semiconductor nanocrystals to collect photogenerated charges. J Phys Chem C 114:9161

    Article  Google Scholar 

  • Sherkar TS, Jan Anton Koster L (2016) Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells? Phys Chem Chem Phys 18(1):331–338

    Google Scholar 

  • Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221):519–522

    Article  Google Scholar 

  • Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519

    Article  Google Scholar 

  • Smecca E, Numata Y, Deretzis I, Pellegrino G, Boninelli S, Miyasaka T, La Magna A, Alberti A (2016) Stability of solution-processed MAPbI3 and FAPbI3 layers. Phys Chem Chem Phys 18(19):13413–13422

    Article  Google Scholar 

  • Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630

    Google Scholar 

  • Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JT-W, Wojciechowski K, Zhang W (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5(9):1511–1515

    Article  Google Scholar 

  • Son DY, Im JH, Kim HS, Park NG (2014) 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118:16567–16573

    Article  Google Scholar 

  • Song J, Zheng E, Bian J, Wang XF, Tian W, Sanehira Y, Miyasaka T (2015a) Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A 3:10837–10844

    Article  Google Scholar 

  • Song J, Bian J, Zheng E, Wang X-F, Tian W, Miyasaka T (2015b) Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer. Chem Lett 44:610–612

    Article  Google Scholar 

  • Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156):341–344

    Article  Google Scholar 

  • Stylianakis MM, Maksudov T, Panagiotopoulos A, Kakavelakis G, Petridis K (2019) Inorganic and hybrid perovskite based laser devices: a review. Materials 12(6):859

    Article  Google Scholar 

  • Su T-S, Hsieh T-Y, Hong C-Y, Wei T-C (2015) Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Sci Rep 5:16098

    Article  Google Scholar 

  • Subbiah AS, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar SK (2014) Inorganic hole conducting layers for perovskite-based solar cells. J Phys Chem Lett 5:1748–1753

    Article  Google Scholar 

  • Sum TC, Mathews N (2014a) Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci 7(8):2518–2534

    Article  Google Scholar 

  • Sum TC, Mathews N (2014b) Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci 7:2518–2534

    Article  Google Scholar 

  • Sun W, Li Y, Ye S, Rao H, Yan W, Peng HT, Li Y, Liu Z, Wang S, Chen Z, Xiao L, Bian Z, Huang C (2016a) High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale 8:10806–10813

    Article  Google Scholar 

  • Sun W, Ye S, Rao H, Li Y, Liu Z, Xiao L, Chen Z, Bian Z, Huang C (2016b) Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale 8:15954–15960

    Article  Google Scholar 

  • Sveinbjornsson K, Aitola K, Zhang J, Johansson MB, Zhang X, Correa-Baena J-P, Hagfeldt A, Boschloo G, Johansson EMJ (2016) Ambient air-processed mixed-ion perovskites for high-efficiency solar cell. J Mater Chem A 4:16536–16545

    Article  Google Scholar 

  • Tainter GD, Hörantner MT, Pazos-Outón LM, Lamboll RD, Āboliņš H, Leijtens T, Mahesh S, Friend RH, Snaith HJ, Joyce HJ, Deschler F (2019) Long-range charge extraction in back-contact perovskite architectures via suppressed recombination. Joule 3(5):1301–1313

    Article  Google Scholar 

  • Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH (2014) Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9(9):687–692

    Article  Google Scholar 

  • Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10:765

    Article  Google Scholar 

  • Tang J-F, Tseng Z-L, Chen L-C, Chu S-Y (2016) ZnO nanowalls grown at low-temperature for electron collection in high-efficiency perovskite solar cells. Sol Energy Mater Sol Cells 154:18–22

    Article  Google Scholar 

  • Tao C, Neutzner S, Colella L, Marras S, Srimath Kandada AR, Gandini M, De Bastiani M, Pace G, Manna L, Caironi M, Bertarelli C, Petrozza A (2015) 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells. Energy Environ Sci 8:2365–2370

    Google Scholar 

  • Tavakoli MM, Tavakoli R, Hasanzadeh S, Mirfasih MH (2016) Interface engineering of perovskite solar cell using a reduced-graphene scaffold. J Phys Chem C 120:19531–19536

    Article  Google Scholar 

  • Tian H, Xu B, Chen H, Johansson EM, Boschloo G (2014) Solid-state perovskite-sensitized p-type mesoporous nickel oxide solar cells. Chemsuschem 7:2150–2153

    Article  Google Scholar 

  • Tsai HH, Nie WY, Blancon JC, Toumpos CCS, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG, Mohite AD (2016a) High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536(7616):312–316

    Article  Google Scholar 

  • Tsai CM, Wu HP, Chang ST, Huang CF, Wang CH, Narra S, Yang YW, Wang CL, Hung CH, Diau EWG (2016b) Role of tin chloride in tin-rich mixed-halide perovskites applied as mesoscopic solar cells with a carbon counter electrode. ACS Energy Lett 1:1086–1093

    Article  Google Scholar 

  • Tsai CM, Wu GW, Narra S, Chang HM, Mohanta N, Wu HP, Wang CL, Diau EWG (2017) Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%. J Mater Chem A 5:739–747

    Article  Google Scholar 

  • Tsujimoto K, Nguyen DC, Ito S, Nishino H, Matsuyoshi H, Konno A, Asoka Kumara GR, Tennakone K (2012) TiO2 surface treatment effects by Mg2+, Ba2+, and Al3+ on Sb2S3 extremely thin absorber solar cells. J Phys Chem C 116:13465–13471 (2012)

    Google Scholar 

  • Upama MB, Elumalai NK, Mahmud MA, Wang D, Haque F, Gonçales VR, Gooding JJ, Wright M, Xu C, Uddin A (2017) Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells. Org Electron 50:279–289

    Article  Google Scholar 

  • Vanalakar SA, Agawane GL, Shin SW, Suryawanshi MP, Gurav KV, Jeon KS, Patil PS, Jeong CW, Kim JY, Kim JH (2015) A review on pulsed laser deposited CZTS thin films for solar cell applications. J Alloys Compd 619:109–121

    Article  Google Scholar 

  • Walsh A, Chen SY, Wei SH, Gong XG (2012) Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv Energy Mater 2:400–409

    Article  Google Scholar 

  • Wang H, Kim DH (2017) Perovskite-based photodetectors: materials and devices. Chem Soc Rev 46(17):5204–5236

    Article  Google Scholar 

  • Wang KC, Jeng JY, Shen PS, Chang YC, Diau EW, Tsai CH, Chao TY, Hsu HC, Lin PY, Chen P, Guo TF, Wen TC (2014a) p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci Rep 4:4756

    Google Scholar 

  • Wang KC, Shen PS, Li MH, Chen S, Lin MW, Chen P, Guo TF (2014b) Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl Mater Interfaces 6:11851–11858

    Article  Google Scholar 

  • Wang H, Zeng X, Huang Z, Zhang W, Qiao X, Hu B, Zou X, Wang M, Cheng YB, Chen W (2014c) Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes. ACS Appl Mater Interfaces 6:12609–12617

    Article  Google Scholar 

  • Wang L, Fu W, Gu Z, Fan C, Yang X, Li H, Chen H (2014d) Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer. J Mater Chem C 2:9087–9090

    Article  Google Scholar 

  • Wang JTW, Ball JM, Barea EM, Abate A, Alexander-Webber JA, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith HJ, Nicholas RJ (2014e) Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14:724–730

    Article  Google Scholar 

  • Wang K, Shi Y, Dong Q, Li Y, Wang S, Yu X, Wu M, Ma T (2015a) Low-temperature and solution-processed amorphous WOX as electron-selective layer for perovskite solar cells. J Phys Chem Lett 6:755–759

    Article  Google Scholar 

  • Wang H, Hu XY, Chen HX (2015b) The effect of carbon black in carbon counter electrode for CH3NH3PbI3/TiO2 heterojunction solar cells. RSC Adv 5:30192–30196

    Article  Google Scholar 

  • Wang XY, Li Z, Xu WJ, Kulkarni SA, Batabyal SK, Zhang S, Cao AY, Wong LH (2015c) TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11:728–735

    Article  Google Scholar 

  • Wang J, Qin M, Tao H, Ke W, Chen Z, Wan J, Qin P, Xiong L, Lei H, Yu H, Fang G (2015d) Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer. Appl Phys Lett 106:121104

    Article  Google Scholar 

  • Wang H, Sayeed BA, Wang T (2015e) Perovskite solar cells based on nanocrystalline SnO2 material with extremely small particle sizes. Aust J Chem 68:1783–1788

    Article  Google Scholar 

  • Wang BB, Zhang ZG, Ye SY, Gao L, Yan TH, Bian ZQ, Huang CH, Li YF (2016a) Solution-processable cathode buffer layer for high-performance ITO/CuSCN-based planar heterojunction perovskite solar cell. Electrochim Acta 218:263–270

    Article  Google Scholar 

  • Wang BX, Liu TF, Zhou YB, Chen X, Yuan XB, Yang YY, WP Liu, Wang JM, Han HW, Tang YW (2016b) Hole-conductor-free perovskite solar cells with carbon counter electrodes based on ZnO nanorod arrays. Phys Chem Chem Phys 18:27078–27082

    Google Scholar 

  • Wang F, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K (2016c) Highly stable perovskite solar cells with an all-carbon hole transport layer. Nanoscale 8:11882–11888

    Article  Google Scholar 

  • Wang K, Shi Y, Li B, Zhao L, Wang W, Wang X, Bai X, Wang S, Hao C, Ma T (2016d) Amorphous Inorganic Electron-selective layers for efficient perovskite solar cells: feasible strategy towards room-temperature fabrication. Adv Mater 28:1891–1897

    Article  Google Scholar 

  • Wang C, Zhao D, Grice CR, Liao W, Yu Y, Cimaroli A, Shrestha N, Roland PJ, Chen J, Yu Z, Liu P, Cheng N, Ellingson R, Zhao X, Yan Y (2016e) Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J Mater Chem A 4:12080–12087

    Google Scholar 

  • Wang F, Ma J, Xie F, Li L, Chen J, Fan J, Zhao N (2016f) Organic cation-dependent degradation mechanism of organotin halide perovskites. Adv Funct Mater 26:3417–3423

    Article  Google Scholar 

  • Wang S, Jiang Y, Juarez-Perez EJ, Ono LK, Qi Y (2016g) Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat Energy 2(1):16195

    Article  Google Scholar 

  • Wang HX, Yu Z, Jiang X, Li JJ, Cai B, Yang XC, Sun LC (2017a) Efficient and stable inverted planar perovskite solar cells employing CuI as hole-transporting layer prepared by solid–gas transformation. Energy Technol 5:1836–1843

    Article  Google Scholar 

  • Wang X, Deng L-L, Wang L-Y, Dai S-M, Xing Z, Zhan X-X, Lu X-Z, Xie S-Y, Huang R-B, Zheng L-S (2017b) Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. J Mater Chem A 5:1706–1712

    Article  Google Scholar 

  • Wang Z, McMeekin DP, Sakai N, van Reenen S, Wojciechowski K, Patel JB, Johnston MB, Snaith HJ (2017c) Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Adv Mater 29:1604186

    Article  Google Scholar 

  • Wang R, Mujahid M, Duan Y, Wang ZK, Xue JJ, Yang Y (2019) A review of perovskites solar cell stability. Adv Funct Mater 29(47):1808843

    Article  Google Scholar 

  • Wei Z, Chen H, Yan K, Yang S (2014) Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed Engl 53:13239–13243

    Article  Google Scholar 

  • Wei HY, Xiao JY, Yang YY, Lv ST, Shi JJ, Xu X, Dong J, Luo YH, Li DM, Meng QB (2015a) Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Carbon 93:861–868

    Article  Google Scholar 

  • Wei ZH, Chen HN, Yan KY, Zheng XL, Yang SH (2015b) Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J Mater Chem A 3:24226–24231

    Article  Google Scholar 

  • Wei W, Hu BY, Jin FM, Jing ZZ, Li YX, Blanco AAG, Stacchiola DJ, Hu YH (2017) Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance in HTM-free perovskite solar cells. J Mater Chem A 5:7749–7752

    Article  Google Scholar 

  • Wei-Chih L, Kun-Wei L, Tzung-Fang G, Jung L (2015) Perovskite-based solar cells with nickel-oxidized nickel oxide hole transfer layer. IEEE Trans Electron Devices 62:1590–1595

    Article  Google Scholar 

  • Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, Lin YH, Faber H, Pattanasattayavong P, Li JH, Yan F, McLachlan MA, Payne DJ, Heeney M, Anthopoulos TD (2017) Copper (I) thiocyanate (CuSCN) hole-transport layers processed from aqueous precursor solutions and their application in thin-film transistors and highly efficient organic and organometal halide perovskite solar cells. Adv Funct Mater 27:1701818

    Google Scholar 

  • Wojciechowski K, Leijtens T, Siprova S, Schlueter C, Hoärantner MT, Wang JTW, Li CZ, Jen AKY, Lee TL, Snaith HJ (2015) C60 as an efficient n-type compact layer in perovskite solar cells. J Phys Chem Lett 6:2399–2405

    Article  Google Scholar 

  • Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B (2014a) Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6:10505–10510

    Article  Google Scholar 

  • Wu Y, Yang X, Chen H, Zhang K, Qin C, Liu J, Peng W, Islam A, Bi E, Ye F, Yin M, Zhang P, Han L (2014b) Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl Phys Express 7:52301

    Article  Google Scholar 

  • Wu Q, Xue C, Li Y, Zhou P, Liu W, Zhu J, Dai S, Zhu C, Yang S (2015a) Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Appl Mater Interfaces 7:28466–28473

    Article  Google Scholar 

  • Wu WQ, Huang F, Chen D, Cheng YB, Caruso RA (2015b) Thin films of dendritic anatase titania nanowires enable effective hole-blocking and efficient light-harvesting for high-performance mesoscopic perovskite solar cells. Adv Funct Mater 25:3264–3272

    Article  Google Scholar 

  • Wu R, Yang B, Xiong J, Cao C, Huang Y, Wu F, Sun J, Zhou C, Huang H, Yang J (2015c) Dependence of device performance on the thickness of compact TiO2 layer in perovskite/TiO2 planar heterojunction solar cells. J Renew Sustain Energy 7:043105

    Article  Google Scholar 

  • Wu X, Trinh MT, Niesner D, Zhu H, Norman Z, Owen JS, Yaffe O, Kudisch BJ, Zhu XY (2015d) Trap states in lead iodide perovskites. J Am Chem Soc 137(5):2089–2096

    Article  Google Scholar 

  • Wu Q, Zhou W, Liu Q, Zhou P, Chen T, Lu Y, Qiao Q, Yang S (2016) Solution-processable ionic liquid as an independent or modifying electron transport layer for high-efficiency perovskite solar cells. ACS Appl Mater Interfaces 8:34464–34473

    Article  Google Scholar 

  • Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L (2017) Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv Mater 29:1701073

    Google Scholar 

  • Xiao MD, Gao M, Huang FZ, Pascoe AR, Qin TS, Cheng YB, Bach U, Spiccia L (2016) Efficient perovskite solar cells employing inorganic interlayers. Chemnanomat 2:182–188

    Article  Google Scholar 

  • Xiao YQ, Cheng N, Kondamareddy KK, Wang CL, Liu P, Guo SS, Zhao XZ (2017) W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. J Power Sources 342:489–494

    Article  Google Scholar 

  • Xie FX, Chen CC, Wu YZ, Li X, Cai ML, Liu X, Yang XD, Han LY (2017) Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ Sci 10:1942–1949

    Article  Google Scholar 

  • Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156):344–347

    Article  Google Scholar 

  • Xing Y, Sun C, Yip HL, Bazan GC, Huang F, Cao Y (2016) New fullerene design enables efficient passivation of surface traps in high performance p-i-n heterojunction perovskite solar cells. Nano Energy 26:7–15

    Article  Google Scholar 

  • Xu X, Zhang H, Cao K, Cui J, Lu J, Zeng X, Shen Y, Wang M (2014) Lead methylammonium triiodide perovskite-based solar cells: an interfacial charge-transfer investigation. Chem Sus Chem 7:3088–3094

    Article  Google Scholar 

  • Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M (2015a) Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett 15:2402–2408

    Article  Google Scholar 

  • Xu X, Zhang H, Shi J, Dong J, Luo Y, Li D, Meng Q (2015b) Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J Mater Chem A 3:19288–19293

    Article  Google Scholar 

  • Xu L, Wan F, Rong Y, Chen H, He S, Xu X, Liu G, Han H, Yuan Y, Yang J, Gao Y, Yang B, Zhou C (2017) Stable monolithic hole-conductor-free perovskite solar cells using TiO2 nanoparticle binding carbon films. Org Electron 45:131–138

    Article  Google Scholar 

  • Yan K, Wei Z, Li J, Chen H, Yi Y, Zheng X, Long X, Wang Z, Wang J, Xu J, Yang S (2015) High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small 11:2269–2274

    Article  Google Scholar 

  • Yang YY, Xiao JY, Wei HY, Zhu LF, Li DM, Luo YH, Wu HJ, Meng QB (2014) An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Adv 4:52825–52830

    Article  Google Scholar 

  • Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015a) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237

    Article  Google Scholar 

  • Yang Y, Ri K, Mei AY, Liu LF, Hu M, Liu TF, Li X, Han HW (2015b) The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell. J Mater Chem A 3:9103–9107

    Article  Google Scholar 

  • Yang IS, You JS, Do Sung S, Chung CW, Kim J, Lee WI (2016a) Novel spherical TiO2 aggregates with diameter of 100 nm for efficient mesoscopic perovskite solar cells. Nano Energy 20:272–282

    Article  Google Scholar 

  • Yang D, Yang R, Ren X, Zhu X, Yang Z, Li C, Liu SF (2016b) Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv Mater 28:5206–5213

    Article  Google Scholar 

  • Yang D, Zhou X, Yang R, Yang Z, Yu W, Wang X, Li C, Liu SF, Chang RPH (2016c) Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ Sci 9:3071–3078

    Article  Google Scholar 

  • Yang Z, Rajagopal A, Chueh C-C, Jo SB, Liu B, Zhao T, Jen AKY (2016d) Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv Mater 28:8990–8997

    Article  Google Scholar 

  • Yang D, Zhou X, Yang R, Yang Z, Yu W, Wang X, Li C, Liu S, Chang RPH (2016e) Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ Sci 9(10):3071–3078

    Article  Google Scholar 

  • Yang YL, Chen HN, Zheng XL, Meng XY, Zhang T, Hu C, Bai Y, Xiao S, Yang SH (2017) Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon-based perovskite solar cells. Nano Energy 42:322–333

    Article  Google Scholar 

  • Yang Y, Wu J, Wang X, Guo Q, Liu X, Sun W, Wei Y, Huang Y, Lan Z, Huang M, Lin J, Chen H, Wei Z (2020) Suppressing vacancy defects and grain boundaries via Ostwald Ripening for high-performance and stable perovskite solar cells. Adv Mater 32(7):1904347

    Article  Google Scholar 

  • Ye S, Sun W, Li Y, Yan W, Peng H, Bian Z, Liu Z, Huang C (2015) CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%, Nano Lett 15:3723–3728

    Google Scholar 

  • Yeo JS, Kang R, Lee S, Jeon YJ, Myoung N, Leek CL, Kim DY, Yun JM, Seo YH, Kim SS, Na SI (2015) Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12:96–104

    Article  Google Scholar 

  • Yi C, Luo J, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, Zakeeruddin SM, Röthlisberger U, Grätzel M (2016) Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ Sci 9:656–662

    Google Scholar 

  • Yin XT, Que MD, Xing YL, Que WX (2015) High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J Mater Chem A 3:24495–24503

    Article  Google Scholar 

  • Yin X, Chen P, Que M, Xing Y, Que W, Niu C, Shao J (2016) Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano 10:3630–3636

    Article  Google Scholar 

  • Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K (2017) Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol Energy Mater Sol 173:37–42

    Article  Google Scholar 

  • You J, Hong Z, Yang Y, Chen Q, Cai M, Song T-B, Chen C-C, Lu S, Liu Y, Zhou H, Yang Y (2014) Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8:1674–1680

    Article  Google Scholar 

  • You P, Liu Z, Tai Q, Liu S, Yan F (2015) Efficient semi transparent perovskite solar cells with graphene electrodes. Adv Mater 27:3632–3638

    Article  Google Scholar 

  • You J, Meng L, Song TB, Guo TF, Yang YM, Chang WH, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y (2016) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11:75–81

    Article  Google Scholar 

  • Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili MN, Li Y, Wu K, Wang X, Mohammed OF, Wu T (2016a) Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale 8:6173–6179

    Article  Google Scholar 

  • Yu X, Chen S, Yan K, Cai X, Hu H, Peng M, Chen B, Dong B, Gao X, Zou D (2016b) Enhanced photovoltaic performance of perovskite solar cells with mesoporous SiO2 scaffolds. J Power Sources 325:534–540

    Article  Google Scholar 

  • Yu Y, Wang C, Grice CR, Shrestha N, Chen J, Zhao D, Liao W. Cimaroli AJ, Roland PJ, Ellingson RJ (2016) Improving the performance of formamidinium and cesium lead triiodide perovskite solar cells using lead thiocyanate additives. ChemSusChem 9:3288–3297

    Google Scholar 

  • Yuan Y, Huang J (2016) Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc Chem Res 49(2):286–293

    Article  Google Scholar 

  • Yue GQ, Chen D, Wang P, Zhang J, Hu ZY, Zhu YJ (2016) Low-temperature prepared carbon electrodes for hole-conductor-free mesoscopic perovskite solar cells. Electrochim Acta 218:84–90

    Article  Google Scholar 

  • Yue SZ, Liu K, Xu R, Li MC, Azam M, Ren K, Liu J, Sun Y, Wang ZJ, Cao DW, Yan XH, Qu SC, Lei Y, Wang ZG (2017) Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells. Energy Environ Sci 10:2570–2578

    Article  Google Scholar 

  • Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L (2014) Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl Mater Interfaces 6:16140–16146

    Article  Google Scholar 

  • Zhang LJ, Liu TF, Liu LF, Hu M, Yang Y, Mei AY, Han HW (2015a) The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. J Mater Chem A 3:9165–9170

    Article  Google Scholar 

  • Zhang F, Yang X, Cheng M, Li J, Wang W, Wang H, Sun L (2015b) Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells. J Mater Chem A 3:24272–24280

    Article  Google Scholar 

  • Zhang J, Juárez-Pérez EJ, Mora-Seró I, Viana B, Pauporté T (2015c) Fast and low temperature growth of electron transport layers for efficient perovskite solar cells. J Mater Chem A 3:4909–4915

    Article  Google Scholar 

  • Zhang J, Shi C, Chen J, Ying C, Wu N, Wang M (2016a) Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. J Semicond 37:033002

    Article  Google Scholar 

  • Zhang NN, Guo YJ, Yin X, He M, Zou XP (2016b) Spongy carbon film deposited on a separated substrate as counter electrode for perovskite-based solar cell. Mater Lett 182:248–252

    Article  Google Scholar 

  • Zhang FG, Yang XC, Cheng M, Wang WH, Sun LC (2016c) Boosting the efficiency and the stability of low-cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy 20:108–116

    Article  Google Scholar 

  • Zhang CX, Luo YD, Chen XH, Chen YW, Sun Z, Huang SM (2016d) Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett 8:347–357

    Article  Google Scholar 

  • Zhang LQ, Yang XL, Jiang Q, Wang PY, Yin ZG, Zhang XW, Tan HR, Yang Y, Wei MY, Sutherland BR, Sargent EH, You JB (2017a) Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat Commun 8:15640

    Article  Google Scholar 

  • Zhang J, Hultqvist A, Zhang T, Jiang L, Ruan C, Yang L, Cheng Y, Edoff M, Johansson EMJ (2017b) Al2O3 underlayer prepared by atomic layer deposition for efficient perovskite solar cells. Chemsuschem 10:3810–3817

    Article  Google Scholar 

  • Zhang M, Yun JS, Ma Q, Zheng J, Lau CFJ, Deng X, Kim J, Kim D, Seidel J, Green MA (2017c) High-efficiency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett 2:438–444

    Article  Google Scholar 

  • Zhao K, Munir R, Yan B, Yang Y, Kim T, Amassian A (2015) Solution-processed inorganic copper (I) thiocyanate (CuSCN) hole transporting layers for efficient p-i-n perovskite solar cells. J Mater Chem A 3:20554–20559

    Article  Google Scholar 

  • Zhao DW, Yu Y, Wang CL, Liao WQ, Shrestha N, Grice CR, Cimaroli AJ, Guan L, Ellingson RJ, Zhu K, Zhao XZ, Xiong RG, Yan YF (2017) Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2(4):17018

    Article  Google Scholar 

  • Zheng X, Wu C, Jha SK, Li Z, Zhu K, Priya S (2016) Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett 1:1014–1020

    Article  Google Scholar 

  • Zheng X, Chen H, Li Q, Yang Y, Wei Z, Bai Y, Qiu Y, Zhou D, Wong KS, Yang S (2017) Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells. Nano Lett 17:2496–2505

    Article  Google Scholar 

  • Zhou HP, Hsu WC, Duan HS, Bob B, Yang WB, Song TB, Hsu CJ, Yang Y (2013) CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ Sci 6:2822–2838

    Article  Google Scholar 

  • Zhou H, Shi Y, Dong Q, Zhang H, Xing Y, Wang K, Du Y, Ma T (2014a) Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J Phys Chem Lett 5:3241–3246

    Article  Google Scholar 

  • Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y (2014b) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546

    Article  Google Scholar 

  • Zhou H, Shi Y, Wang K, Dong Q, Bai X, Xing Y, Du Y, Ma T (2015) Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells. J Phys Chem C 119:4600–4605

    Article  Google Scholar 

  • Zhu Z, Bai Y, Zhang T, Liu Z, Long X, Wei Z, Wang Z, Zhang L, Wang J, Yan F, Yang S (2014) High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew Chem Int Ed 126:12571–12575

    Google Scholar 

  • Zhu Z, Zheng X, Bai Y, Zhang T, Wang Z, Xiao S, Yang S (2015) Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells. Phys Chem Chem Phys 17:18265–18268

    Article  Google Scholar 

  • Zhu Z, Zhao D, Chueh C-C, Shi X, Li Z, Jen AKY (2018) Highly efficient and stable perovskite solar cells enabled by all-crosslinked charge-transporting layers. Joule 2:168–183

    Article  Google Scholar 

  • Zuo C, Ding L (2015) Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11:5528–5532

    Article  Google Scholar 

  • Zuo CT, Bolink HJ, Han HW, Huang JS, Cahen D, Ding LM (2016) Advances in perovskite solar cells. Adv Sci 3(7):1500324

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Bhaumik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhaumik, S., Saha, S.K., Rath, A.K. (2021). A Perspective on Perovskite Solar Cells. In: Tyagi, H., Chakraborty, P.R., Powar, S., Agarwal, A.K. (eds) New Research Directions in Solar Energy Technologies. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-0594-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0594-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0593-2

  • Online ISBN: 978-981-16-0594-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics