Skip to main content

Personalization Models for Human Activity Recognition with Distribution Matching-Based Metrics

  • Conference paper
  • First Online:
Deep Learning for Human Activity Recognition (DL-HAR 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1370))

Included in the following conference series:

  • 772 Accesses

Abstract

Building activity recognition systems conventionally involves training a common model from all data of training users and utilizing this model to recognize activities of unseen subjects. However, participants come from diverse demographics, so that different users can perform the same actions in diverse ways. Each subject might exhibit user-specific signal patterns, yet a group of users may perform activities in similar manners and share analogous patterns. Leveraging this intuition, we explore Frechet Inception Distance (FID) as a distribution matching-based metric to measure the similarity between users. From that, we propose the nearest-FID-neighbors and the FID-graph clustering techniques to develop user-specific models that are trained with data from the community the testing user likely belongs to. Verified on a series of benchmark wearable datasets, the proposed techniques significantly outperform the model trained with all users.

H. T. Nguyen and H. Kwon—Both authors contributed equally to this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bächlin, M., et al.: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 14, 436–446 (2010)

    Article  Google Scholar 

  2. Chatzaki, C., Pediaditis, M., Vavoulas, G., Tsiknakis, M.: Human daily activity and fall recognition using a smartphone’s acceleration sensor. In: Röcker, C., O’Donoghue, J., Ziefle, M., Helfert, M., Molloy, W. (eds.) ICT4AWE 2016. CCIS, vol. 736, pp. 100–118. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62704-5_7

    Chapter  Google Scholar 

  3. Chavarriaga, R., et al.: The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recogn. Lett. 23, 2033–2042 (2013). https://doi.org/10.1016/j.patrec.2012.12.014

    Article  Google Scholar 

  4. Clifton, L., Clifton, D., Pimentel, M., Watkinson, P., Tarassenko, L.: Gaussian processes for personalized e-health monitoring with wearable sensors. IEEE Trans. Bio-medical Eng. 60, 193–197 (2013). https://doi.org/10.1109/TBME.2012.2208459

    Article  Google Scholar 

  5. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799. https://www.pnas.org/content/99/12/7821

  6. Gong, X., Chang, S., Jiang, Y., Wang, Z.: AutoGAN: neural architecture search for generative adversarial networks (2019)

    Google Scholar 

  7. Haresamudram, H., et al.: Masked reconstruction based self-supervision for human activity recognition. In: Proceedings of the 2020 International Symposium on Wearable Computers, pp. 45–49 (2020)

    Google Scholar 

  8. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a nash equilibrium. CoRR abs/1706.08500 (2017). http://arxiv.org/abs/1706.08500

  9. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, December 2014

    Google Scholar 

  10. Kwon, H., Abowd, G.D., Plötz, T.: Handling annotation uncertainty in human activity recognition. In: Proceedings of the 23rd International Symposium on Wearable Computers, ISWC 2009, pp. 109–117. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3341163.3347744

  11. Lane, N.D., et al.: Community similarity networks. Pers. Ubiquit. Comput. 18(2), 355–368 (2014). https://doi.org/10.1007/s00779-013-0655-1

    Article  Google Scholar 

  12. Liu, D., Peng, F., Shea, A., Rudovic, O., Picard, R.W.: DeepFaceLIFT: interpretable personalized models for automatic estimation of self-reported pain. CoRR abs/1708.04670 (2017). http://arxiv.org/abs/1708.04670

  13. Morales, F.J.O., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016). http://dblp.uni-trier.de/db/journals/sensors/sensors16.html#MoralesR16

  14. Peterson, K., Rudovic, O., Guerrero, R., Picard, R.W.: Personalized gaussian processes for future prediction of Alzheimer’s disease progression. CoRR abs/1712.00181 (2017). http://arxiv.org/abs/1712.00181

  15. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000). https://doi.org/10.1023/A:1026543900054

    Article  MATH  Google Scholar 

  16. Saeed, A., Ozcelebi, T., Lukkien, J.: Multi-task self-supervised learning for human activity detection. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 3(2), 1–30 (2019)

    Article  Google Scholar 

  17. Scholl, P., Wille, M., Van Laerhoven, K.: Wearables in the wet lab: a laboratory system for capturing and guiding experiments. In: Ubicomp, pp. 589–599. ACM, September 2015. https://doi.org/10.1145/2750858.2807547

  18. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. CoRR abs/1512.00567 (2015). http://arxiv.org/abs/1512.00567

  19. Taylor, S., Jaques, N., Nosakhare, E., Sano, A., Picard, R.W.: Personalized multitask learning for predicting tomorrow’s mood, stress, and health. IEEE Trans. Affect. Comput. 11(2), 200–213 (2020). https://doi.org/10.1109/TAFFC.2017.2784832

    Article  Google Scholar 

  20. Weiss, G., Lockhart, J.: The impact of personalization on smartphone-based activity recognition. In: AAAI Workshop - Technical Report, January 2012

    Google Scholar 

  21. Zhao, S., Li, W., Cao, J.: A user-adaptive algorithm for activity recognition based on k-means clustering, local outlier factor, and multivariate gaussian distribution. Sensors 18, 1850 (2018). https://doi.org/10.3390/s18061850

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huy Thong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, H.T., Kwon, H., Haresamudram, H., Peterson, A.F., Plötz, T. (2021). Personalization Models for Human Activity Recognition with Distribution Matching-Based Metrics. In: Li, X., Wu, M., Chen, Z., Zhang, L. (eds) Deep Learning for Human Activity Recognition. DL-HAR 2021. Communications in Computer and Information Science, vol 1370. Springer, Singapore. https://doi.org/10.1007/978-981-16-0575-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0575-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0574-1

  • Online ISBN: 978-981-16-0575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics