Skip to main content

Flame-Retardant Aspects of XLPE

  • Chapter
  • First Online:
Crosslinkable Polyethylene

Abstract

Crosslinking of polyethylene is used to improve mechanical properties, thermo-mechanical performance and chemical resistance of polyethylene. Many applications of crosslinked polyethylene (XLPE) require some level of flame resistance, especially those applications that require the XLPE to be used in and around enclosed spaces, such as automobiles, ships, buildings and tunnels. In such applications, flame-retardant additives are introduced in a fully formulated composition. Common applications requiring flame-retardant (FR) XLPE include building and construction, military, shipboard and other transportation, electronics and appliances. Fabricated articles made of FR XLPE used in such applications include those in the forms of foams, wires and cables. Flame-retardant technologies exist to accommodate all of the leading crosslinking methods for XLPE, including peroxide/free radical, silane-based moisture cure and irradiation-based methods. To sustain a fire, all three elements of the fire triangle—fuel, oxygen, heat—must be present. Flame-retardant approaches typically involve one or more of the following methods to attack one or more elements of the fire triangle: bromine or chlorine-containing additives that release fire-retarding halogen radicals to decrease the rate of heat generation; hydroxides of metals such as aluminum and magnesium, which decompose endothermically to absorb heat and dilute fuel vapor; intumescent systems, typically based on nitrogen and phosphorus-containing molecules, which form a porous char during combustion to slow the rate of heat transfer and fuel release; and various synergistic or cooperative additives to further enhance performance of the flame-retardant additive package. There is a steady long-term trend toward halogen-free flame-retardant (HFFR) approaches, due especially in part to the propensity for HFFR to produce lower levels of hazardous smoke during combustion. This chapter provides an overview of key applications requiring FR XLPE as well as typical FR approaches and considerations for each of the most common crosslinking methods. In addition, relevant combustion and FR mechanisms are reviewed. A high-level discussion of standards, regulations and trends is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walters R (2002) Molar group contributions to the heat of combustion. Fire Mater 26:131–139

    Article  CAS  Google Scholar 

  2. Troitzsch J (2004) Plastics flammability handbook: principles, regulations, testing, and approval. Carl Hanser Verlag GmbH & Co, KG

    Book  Google Scholar 

  3. Madorsky S, Strauss S (1954) Thermal degradation of polymers as a function of molecular structure. J Res Natl Bur Stand (US) 53:361–370

    Article  CAS  Google Scholar 

  4. Hull T, Price D, Liu Y, Wills C, Brady J (2003) An investigation into the decomposition and burning behaviour of ethylene-vinyl acetate copolymer nanocomposite materials. Polym Degrad Stab 82(2):365–371 and references cited therein

    Article  CAS  Google Scholar 

  5. Liu H, Fang Z, Peng M, Shen L, Wang Y (2009) The effects of irradiation cross-linking on the thermal degradation and flame-retardant properties of the HDPE/EVA/magnesium hydroxide composites. Radiat Phys Chem 78:922–926

    Article  CAS  Google Scholar 

  6. Shafiq M, Yasin T (2012) Effect of gamma irradiation on linear low density polyethylene/magnesium hydroxide/sepiolite composite. Radiat Phys Chem 81:52–56

    Article  CAS  Google Scholar 

  7. Wang Z, Hu Y, Gui Z, Zong R (2003) Halogen-free flame retardation and silane crosslinking of polyethylenes. Polym Testing 22:533–538

    Article  CAS  Google Scholar 

  8. Cogen J, Lin T, Lyon R (2009) Correlations between pyrolysis combustion flow calorimetry and conventional flammability tests with halogen free flame retardant polyolefin compounds. Fire Mater 33:33–50

    Article  CAS  Google Scholar 

  9. Hull T, Witkowski A, Hollingbery L (2011) Fire retardant action of mineral fillers. Polym Degrad Stab 96(8):1462–1469

    Article  CAS  Google Scholar 

  10. Bocchini S, Camino G (2010) Halogen-containing flame retardants, in Grand A, Wilkie C. Fire Retardancy of Polymeric Materials, United States, CRC Press p 76

    Google Scholar 

  11. Boryniec S (2001) Polymer combustion processes. 3. flame retardants for polymeric materials. Prog Rubber Plast Technol 17(2):127–148

    Google Scholar 

  12. Babushok V, Deglmann P, Krämer R, Linteris G (2017) Influence of antimony-halogen additives on flame propagation. Combust Sci Technol 189(2):290–311

    Article  CAS  PubMed  Google Scholar 

  13. Troitzsch J Plastics (2004) Flammability Handbook, Hanser Gardener Publications, Cincinnati pp 145–146

    Google Scholar 

  14. Hornsby P, Watson C (1989) Mechanism of smoke suppression and fire retardancy in polymers containing magnesium hydroxide filler. Plast Rub Proc Appl 11:45–51

    CAS  Google Scholar 

  15. Green J (1996) Mechanisms for flame retardancy and smoke suppression—a review. Flame Retardants-101: Basic Dynamics’, 1996 –Spring Conference, FRCA, Baltimore, 13–30

    Google Scholar 

  16. Weil E, Levchik S (2008) Flame retardants in commercial use or development for polyolefins. J Fire Sci 26:5–43

    Article  CAS  Google Scholar 

  17. Hollingbery L, Hull T (2010) The fire retardant behaviour of huntite and hydromagnesite—a review. Polym Degrad Stab 95:2213–2225

    Article  CAS  Google Scholar 

  18. Hollingbery L, Hull T (2012) The thermal decomposition of natural mixtures of huntite and hydromagnesite. Thermochim Acta 528:52–54

    Article  CAS  Google Scholar 

  19. Adewale K (2016) Thermoplastic Additives: Flame Retardants in Olabisi O, Adewale K. Handbook of Thermoplastic, Taylor & Francis Group, Boca Raton, FL p 889

    Google Scholar 

  20. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J-M, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R: Reports 63(3):100–125

    Article  CAS  Google Scholar 

  21. Babushok V, Tsang W (2000) Combust Flame 124:488

    Article  Google Scholar 

  22. Levchik SV, Costa L, Camino G (1996) Polym Degrad Stab 43:43

    Article  Google Scholar 

  23. Bourbigot S, le Bras M, Duquesne S, Rochery M (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289(6):499–511

    Article  CAS  Google Scholar 

  24. Bourbigot S, Bras ML, Delobel R (1993) Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 31(8):1219–1230

    Article  CAS  Google Scholar 

  25. Camino G, Costa L, di Cortemiglia MPL (1991) Overview of fire retardant mechanisms. Polym Degrad Stab 33(2):131–154

    Article  CAS  Google Scholar 

  26. United States patent 9,056,973

    Google Scholar 

  27. Bowbigot S, Le Bras M, Delobel R, Breant P, Tremillon J-M (1996) 4A zeolite synergistic agent in new flame retardant intumescent formulations of polyethylenic polymers-study of the effect of the constituent monomers. Polym Degrad Stab 54:275–287

    Article  Google Scholar 

  28. Feng C, Zhang Y, Liang D, Liu S, Chi Z, Jiarui X (2015) Influence of zinc borate on the flame retardancy and thermal stability of intumescent flame retardant polypropylene composites. J Anal Appl Pyrol 115:224–232

    Article  CAS  Google Scholar 

  29. Xie R, Qu B (2001) Expandable graphite systems for halogen-free flame-retarding of polyolefins. I. Flammability characterization and synergistic effect, J Appl Polym Sci 80:1181–1189

    Google Scholar 

  30. Michel Le Bras, etc (1997) Polymer Degradation and stability 56:11–21

    Google Scholar 

  31. Atikler U, Demir H, Tokatlı F, Tıhmınlıog F, Balko¨se D, Ulku S (2006) Optimization of the effect of colemanite as a new synergistic agent in an intumescent system, Polym Degrad Stab 91:1563–1570

    Google Scholar 

  32. WO2009016129

    Google Scholar 

  33. US20090281215

    Google Scholar 

  34. Jia S, Zhang Z, Wang Z, Zhang X, Du Z (2005) A study of γ-radiation-crosslinked HDPE/EPDM composites as flame retardants. Polym Int 54(2):320–326

    Article  CAS  Google Scholar 

  35. Sener AA, Demirhan E (2008) The investigation of using magnesium hydroxide as a flame retardant in the cable insulation material by crosslinked polyethylene. Mater Des 29(7):1376–1379

    Article  CAS  Google Scholar 

  36. Biggs JW, Maringer MF (1984) Flame retardant crosslinked polyolefin insulation material. US Patent 4,477,523

    Google Scholar 

  37. Tamboli SM, Mhaske ST, Kale DD (2004) Crosslinked polyethylene. Indian J Chem Technol 11(6):853–864

    CAS  Google Scholar 

  38. Chaudhary BI, Chopin LJ, Klier J (2007) Nitroxyls for scorch suppression, cure control, and functionalization in free-radical crosslinking of polyethylene. Polym Eng Sci 47(1):50–61

    Article  CAS  Google Scholar 

  39. Chaudhary BI, Peterson TH, Wasserman E, Costeux S, Klier J, Pasztor AJ Jr (2010) Thermoreversible crosslinking of polyethylene enabled by free radical initiated functionalization with urethane nitroxyls. Polymer 51(1):153–163

    Article  CAS  Google Scholar 

  40. Manaila E, Stelescu MD, Craciun G (2012) Aspects Regarding Radiation Crosslinking of Elastomers, Advanced Elastomers - Technology, Properties and Applications, Anna Boczkowska, IntechOpen, DOI:10.5772/47747

    Google Scholar 

  41. Pesetskii SS, Jurkowski B, Krivoguz YM, Kelar K (2001) Free-radical grafting of itaconic acid onto LDPE by reactive extrusion: I effect of initiator solubility. Polymer 42(2):469–475

    Article  CAS  Google Scholar 

  42. Akiba M, Hashim AS (1997) Vulcanization and Crosslinking in elastomers. Prog Polym Sci 22(3):475–521

    Article  CAS  Google Scholar 

  43. Liu SQ, Gong WG, Zheng BC (2014) The effect of peroxide cross-linking on the properties of low-density polyethylene. J Macromol Sci Part B 53(1):67–77

    Article  CAS  Google Scholar 

  44. Reyes-Labarta JA, Olaya MM, Marcilla A (2006) DSC and TGA study of the transitions involved in the thermal treatment of binary mixtures of PE and EVA copolymer with a crosslinking agent. Polymer 47(24):8194–8202

    Article  CAS  Google Scholar 

  45. Conley ML et al (2016) Mechanism of acid-catalyzed decomposition of dicumyl peroxide in dodecane: intermediacy of cumene hydroperoxide. Ind Eng Chem Res 55(20):5865–5873

    Article  CAS  Google Scholar 

  46. Shukri TM, Mosnáček J, Basfar AA, Bahattab MA, Noireaux P, Courdreuse A (2008) Flammability of blends of low-density polyethylene and ethylene vinyl acetate crosslinked by both dicumyl peroxide and ionizing radiation for wire and cable applications. J Appl Polym Sci 109(1):167–173

    Article  CAS  Google Scholar 

  47. Kudla S (2009) Assessment of the influence of mineral fillers on polyethylene crosslinking process in the presence of peroxide by rheometric method. Polimery 54(7–8):577–580

    Article  CAS  Google Scholar 

  48. Ramesan MT (2004) The effects of filler content on cure and mechanical properties of dichlorocarbene modified styrene butadiene rubber/carbon black composites. J Polym Res 11(4):333–340

    Article  CAS  Google Scholar 

  49. Dannenberg EM, Jordan ME, Cole HM (1958) Peroxide crosslinked carbon black polyethylene compositions. J Polym Sci 31(122):127–153

    Article  CAS  Google Scholar 

  50. Kharasch MS, Fono A, Nudenberg W (1950) The chemistry of hydroperoxides I. The Acid-Catalyzed Decomposition of α,α-Dimethylbenzyl (α-Cumyl) hydroperoxide. J Org Chem 15(4):748–752

    Google Scholar 

  51. Robinson AE, Marra JV, Amberg LO (1962) Ethylene-propylene rubber vulcanization with aralkyl peroxide and coagents. Ind Eng Chem Product Res Dev 1(2):78–82

    Article  CAS  Google Scholar 

  52. Sarngadharan SC et al (2019) Interactions of Bis(1-methyl-1-phenylethyl) peroxide with the secondary antioxidant Bis(octadecyloxycarbonylethyl) sulfide: mechanistic studies conducted in dodecane as a model system for polyethylene. Ind Eng Chem Res 58(31):14569–14578

    Article  CAS  Google Scholar 

  53. Pearson RW (1957) Mechanism of the radiation crosslinking of polyethylene. J Polym Sci 25(109):189–200

    Article  CAS  Google Scholar 

  54. Manas D et al (2018) The effect of irradiation on mechanical and thermal properties of selected types of polymers. Polymers 10(2):158–179

    Article  CAS  PubMed Central  Google Scholar 

  55. Przybytniak G (2017) Crosslinking of polymers in radiation processing. In: Applications of Ionizing radiation in materials processing, 2nd Ed., Chapter 11, pp 249–267

    Google Scholar 

  56. Ishino I, Hikita M, Mizutani T, Ieda M (1991) Molecular structure and electric breakdown of ethylene/silane copolymers. Jpn J Appl Phys 30(4):720–726

    Article  CAS  Google Scholar 

  57. Dias DT et al (2003) Study of cross-linking process in grafted polyethylene and ethylene based copolymer using a phase resolved photoacoustic method. Rev Sci Instrum 74(1):325–327

    Article  CAS  Google Scholar 

  58. Chaudhary BI et al (2019) Effect of silane functionalized polyethylene structure on properties of moisture-crosslinked compositions and cable constructions. In: Society of plastics engineers (SPE) ANTEC conference proceedings, Mar 18–21, Detroit, Michigan

    Google Scholar 

  59. Zirnstein B, Schulze D, Schartel B (2019) Mechanical and fire properties of multicomponent flame retardant EPDM rubbers using aluminum trihydroxide, ammonium polyphosphate, and polyaniline. Materials 12(12). https://doi.org/10.3390/ma12121932

  60. Wu W, Tian L (2012) Preparation of EPDM flame-resistant cable materials. Appl Mech Mater 151:240–244

    Article  CAS  Google Scholar 

  61. Yang Z et al (2012) Baosheng Sci & Tech Innovation, assignee. Low-smoke halogen-free flame-resistant type-a stainless steel armored cable and preparation method thereof. CN publication 102,637,473A. 15 Aug 2012

    Google Scholar 

  62. Masami N (2005) Furukawa electric, assignee. In: Flame-retardant resin composition and insulated electric wire. JP publication 2,005,350,578A. 22 Dec 22 2005

    Google Scholar 

  63. Hiroshi H et al (2001) Sumitomo electric industries, assignee. In: Insulated wire comprising a flame-retardant polyolefinic resin composition. US patent 6,204,318 B1. 20 Mar 2001

    Google Scholar 

  64. Babrauskas V et al (1991) Fire performance of wire and cable: reaction-to-fire tests—a critical review of the existing methods and of new concepts. In: NIST technical note 1291, United States department of commerce, Washington, DC, p 17

    Google Scholar 

  65. Smedberg A, Hjertberg T, Gustafsson B (1997) Crosslinking reactions in an unsaturated low density polyethylene. Polymer 38(16):4127–4138

    Article  CAS  Google Scholar 

  66. Smedberg A, Hjertberg T, Gustafsson B (2003) Characterization of an unsaturated low-density polyethylene. J Polym Sci Part A 41(19):2974–2984

    Article  CAS  Google Scholar 

  67. Bremner T, Rudin A, Haridoss S (1992) Effects of polyethylene molecular structure on peroxide crosslinking of low density polyethylene. Polym Eng Sci 32(14):939–943

    Article  CAS  Google Scholar 

  68. Sabet M, Hassan A, Wahit MU, Ratnam CT (2009) thermal characterization of alumina trihydrate (ATH) and flammability studies of ATH filled low density polyethylene. Joumal of Industrial Technology 18(1):83–93

    Google Scholar 

  69. Basfar AA, Mosnáček J, Shukri TM, Bahattab MA, Noireaux P, Courdreuse A (2008) Mechanical and thermal properties of blends of low-density polyethylene and ethylene vinyl acetate crosslinked by both dicumyl peroxide and ionizing radiation for wire and cable applications. J Appl Polym Sci 107(1):642–649

    Article  CAS  Google Scholar 

  70. Lyon RE, Janssens ML (2005) Polymer flammability. Report DOT/FAA/AR-05/14, office of aviation research, Washington, D.C. 20591, national technical information service (NTIS), Springfield, Virginia 22161

    Google Scholar 

  71. Sultan BA, Hampton N, Arora A, Mattila A (2002) A review of fifteen years development in moisture curable copolymers and a future outlook. Presented at Cablewire in Mumbai

    Google Scholar 

  72. Andreasson U, Uematsu T, Sultan BA, Anker M, Prieto O (2016) Flame retardant polymer composition. US Patent 9,249,288 B2

    Google Scholar 

  73. Azizi H, Barzin J, Morshedian J (2007) Silane crosslinking of polyethylene: the effects of EVA, ATH and Sb2O3 on properties of the production in continuous grafting of LDPE. eXPRESS Polym Lett 1(6):378–384

    Google Scholar 

  74. Dreux P, Tomer V, Mundra MK, Chaudhary BI, Ghosh-Dastidar A, Patel RM, Sehanobish K (2018) Flame-Retardant, moisture-cured wire and cable constructions with improved glancing impact performance. Patent Application WO2018160846A1

    Google Scholar 

  75. Chaudhary BI, Talreja M, Zhang Y, Bawiskar S, Dreux PC, Mundra MK, Ghosh-Dastidar A, Patel RM, Sehanobish K, Heah CY, Leong KOH (2019) Moisture-cured wire and cable constructions. Patent application WO2019005439A1

    Google Scholar 

  76. Hirschler MM (2010) Regulations, codes, and standards relevant to fire issues in the United States. In Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials, 2nd edn. CRC Press

    Google Scholar 

  77. Babrauskas V (2016) The cone calorimeter. In: Hurley M et al (eds) SFPE handbook of fire protection engineering. Springer, New York, NY

    Google Scholar 

  78. DIN EN ISO 1402: rubber and plastics hoses and hose assemblies—hydrostatic testing (ISO 1402:2009)

    Google Scholar 

  79. UL-44: Thermoset-insulated wires and cables, underwriters laboratories

    Google Scholar 

  80. UL-2556: Wire and cable test methods, underwriters laboratories

    Google Scholar 

  81. Lindsay, D (2018) Technology for high productivity moisture cure crosslinked low voltage cables. In: Conference proceedings, polymers in cables, PA

    Google Scholar 

  82. Marconi AP (2018) Innovative low smoke zero halogen compound technology for control and instrumentation cable. In: Conference proceedings, polymers in cables, PA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Cogen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cogen, J.M., Chaudhary, B.I., Ghosh-Dastidar, A., Sun, Y., Wasserman, S.H. (2021). Flame-Retardant Aspects of XLPE. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0514-7_9

Download citation

Publish with us

Policies and ethics