Skip to main content

Aging and Degradation Studies in Crosslinked Polyethylene (XLPE)

  • Chapter
  • First Online:
Crosslinkable Polyethylene

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 922 Accesses

Abstract

Crosslinked polyethylene (XLPE) is widely used in power cable insulation because of its excellent dielectric characteristics, physical properties, thermal stability and chemical resistance. In spite of its advantageous features, the chemical and physical properties of XPLE change irreversibly changes with time as well as with exposure to electrical, thermal, mechanical or chemical stress conditions. These changes eventually lead to degradation and eventually failure of insulation cables. This chapter discusses the thermal, mechanical, electrical and environmental factors that influence aging and degradation in XLPE. The causes, mechanism and consequence of degradation and breakdown due to electrical and water treeing and its dependence on influencing factors like partial discharge, charge carriers, electrical and mechanical stress, temperature, impurities, etc. are discussed. The chemical degradation and thermal degradation in XLPE due chain scission, depolymerization, crosslinking oxidation and/or hydrolysis are explained along with the influencing factors. Aging, the irreversible change in properties of XPLE arising from changes in its physicochemical structure under the influence of various environment affects the operational life of cable insulation. The effect of thermal and radiation aging on dielectric and structural properties of XLPE is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dyson RW (ed) (1990) Engineering polymers. Chapman and Hall, New York

    Google Scholar 

  2. Barzin J, Azizi H, Morshedian J (2007) Preparation of silane-grafted and moisture crosslinked low density polyethylene. Part II: electrical, thermal and mechanical properties. Polym Plast Technol Eng 46:305–310

    Article  CAS  Google Scholar 

  3. Nilsson S, Hjertberg T, Smedberg A (2010) Structural effects on thermal properties and morphology in XLPE. Eur Polym J 46:1759–1769

    Article  CAS  Google Scholar 

  4. Orton H (2013) History of underground power cables. IEEE Electr Insul Mag 29:52–57

    Article  Google Scholar 

  5. Precopio F (1999) The invention of chemically cross linked polyethylene. IEEE Electr Insul Mag 15:23–25

    Article  Google Scholar 

  6. Hampton N, Hartlein R, Lennartsson H et al (2006) Long-life XLPE-insulated power cables SMAR Tech 1853/27815

    Google Scholar 

  7. Zhou C, Yi H, Dong X (2017) Review of recent research towards power cable life cycle management. High Volt 2:179–187

    Article  Google Scholar 

  8. Ezrin M, Lavigne G (2007) Unexpected and unusual failures of polymeric materials. Eng Fail Anal 14:1153–1165

    Article  Google Scholar 

  9. Kuffel E, Zeangle WS, Kuffel J (eds) (2000) High voltage engineering fundamentals. Butterworth-Heinemann, Oxford

    Google Scholar 

  10. Densley J, Bartnikas R, Bernstein BS (1993) Multi-stress ageing of extruded insulation systems for transmission cables. IEEE Electr Insul Mag 9:15–17

    Article  Google Scholar 

  11. Naidu MS, Kamaraju V (1995) High voltage engineering. McGraw-Hill, New York

    Google Scholar 

  12. Mahajan A, Seralathan KE, Nandini G (2007) Modelling of electric tree propagation in the presence of voids in epoxy resin. Paper presented at the international conference on solid dielectric, winchester, 8–13 July 2007

    Google Scholar 

  13. Uematsu T (1992) Bow-tie-tree in EPR cables are accelerated water treeing test. IEEE Trans Power Deliv 7:1667–1676

    Article  CAS  Google Scholar 

  14. Yoshimitsu T, Mitsui H, Hishida K et al (1983) Water treeing phenomena in humid air. IEEE T Dielect El In 4:396–401

    Google Scholar 

  15. Yoshimitsu T, Mitsui H, Hishida K et al (1983) Water treeing phenomena in humid airIEEE T Dielect El In 4:396–401

    Google Scholar 

  16. Bin LJ, Quan Z, Di Y et al (2008) Study on propagation characteristics of electrical trees in different electrode system. Paper presented at the international conference on high voltage engineering and application, Chongqing, China, 9–12 Nov 2008

    Google Scholar 

  17. Kavitha D (2016) Theoretical and experimental investigationson dielectric properties of epoxy and XLPE Nanocomposites. Ph.D. Thesis, Amrita Vishwa Vidyapeetham

    Google Scholar 

  18. Ramu TS, Nagamani HN (2010) Partial discharge based condition monitoring of high voltage equipment. New Age International (P) Ltd, New Delhi

    Google Scholar 

  19. Wu J, Mor AR, Smit JJ (2019) The effects of superimposed impulse transients on partial discharge in XLPE cable joint. Int J Electr Power Energy Syst 110:497–509

    Article  Google Scholar 

  20. Shimizu N, Laurent C (1998) Electrical tree initiation. IEEE T Dielect El In 5:651–659

    Article  Google Scholar 

  21. Ahmad MH, Bashir N, Ahmad H et al (2014) An overview of electrical tree growth in solid insulating material with emphasis of influencing factors, mathematical models and tree suppression indones. J Electrical Eng Comput Sci 12:5827–5846

    Google Scholar 

  22. Illias H, Tunio MA, Abu Bakar AH et al (2016) Partial discharge phenomena within an artificial void in cable insulation geometry: experimental validation and simulation. IEEE T Dielect El In 23:451–459

    Article  Google Scholar 

  23. Poggi Y, Raharimalala V, Filippini JC et al (1990) Water treeing as mechanical damage. IEEE Trans Electr Insul 25:1056–1065

    Article  Google Scholar 

  24. Tanaka T, Greenwood A (1978) Effects of charge injection and extraction on tree initiation in polyethylene. IEEE Trans Power Appar Syst PAS-97(5):1749–1759

    Google Scholar 

  25. Gao C (2019) A study on the space charge characteristics of AC sliced XLPE cables. IEEE Access 7:20531–20537

    Article  Google Scholar 

  26. Sarathi R, Das S, Anil Kumar CR et al (2004) Analysis of failure of crosslinked polyethylene cables because of electrical treeing: a physicochemical approach. J Appl Polym Sci 92:2169–2178

    Article  CAS  Google Scholar 

  27. Densley R (1979) An investigation into the growth of electrical trees in XLPE cable insulation. IEEE T Dielect El In EI-14: 148–158

    Google Scholar 

  28. Yoshimura N, Noto F (1982) Voltage and frequency dependence of bow-tie trees in crosslinked polyethylene. IEEE T Dielect El In, EI-17:363–367

    Google Scholar 

  29. Fang S, Du B, Member S et al (2019) Effect of temperature gradient on electrical tree in XLPE from 0 to −196 °C. IEEE T Appl Supercon 29:1–4

    Google Scholar 

  30. Li G, Zhou X, Hao C et al (2019) Temperature and electric field dependence of charge conduction and accumulation in XLPE based on polarization and depolarization current. AIP Adv 9:015109

    Article  CAS  Google Scholar 

  31. Fan Y, Zhang D, Li (2018) Study on the fractal dimension and growth time of the electrical treeing degradation at different temperature and moisture. Adv Mater Sci Eng 2018:6019269

    Google Scholar 

  32. Jones JP, Llewellyn JP, Lewis TJ (2005) The contribution of field-induced morphological change to the electrical aging and breakdown of polyethylene. IEEE T Dielect El In 12:951–966

    Article  CAS  Google Scholar 

  33. Montanari GC, Mazzanti G, Simoni L (2002) Progress in electrothermal life modeling of electrical insulation during the last decades. IEEE T Dielect El In 9:730–745

    Article  CAS  Google Scholar 

  34. Danikas M, Papadopoulos D, Morsalin S (2019) Propagation of electrical trees under the influence of mechanical stresses: a short review. Eng Appl Sci Res 9:3750–3756

    Article  Google Scholar 

  35. Gulski E, Cichecki P, Wester F et al (2008) On-site testing and PD diagnosis of high voltage power cables. IEEE T Dielect El In 15:1691–1700

    Article  CAS  Google Scholar 

  36. Hui L, Schadler LS, Nelson JK (2013) The influence of moisture on the electrical properties of cross linked polyethylene/silica nanocomposites. IEEE T Dielect El In 20:641–653

    Article  CAS  Google Scholar 

  37. Zazoum B, David E, Ngo AD (2014) Simulation and modelling of polyethylene/clay nanocomposite for dielectric application. Trans electr electron mater 15:175–181

    Article  Google Scholar 

  38. Chan JC (1978) Electrical performance of oven-dried XLPE cable. IEEE T Dielect El In 13:444–447

    Google Scholar 

  39. Eccles L, Dissado A, Fothergill JC (1992) Water tree inception-experimental support for a mechanical/chemical/electrical theory. Paper presented at the sixth international conference on dielectric materials, measurements and applications, Manchester, UK, 7–10 Sept 1992

    Google Scholar 

  40. Yuan Y, Lu G, Wang W (2003) Dielectric loss and partial discharge test analysis of 10 kV XLPE cable. Paper presented at the 2013 annual report conference on electrical insulation and dielectric phenomena, Shenzhen, China, 20–23 Oct. 2013

    Google Scholar 

  41. Ogiwara J (2010) Temperature characteristics of water tree propagation in a wide temperature range using XLPE sheets. Presented at the 2010 annual report conference on electrical insulation and dielectic phenomena, West Lafayette, IN, USA

    Google Scholar 

  42. Kim C, Jin Z, Huang X et al (2007) Investigation on water treeing behaviours of thermally aged XLPE cable insulation. Polym Degrad Stabil 92:537–544

    Article  CAS  Google Scholar 

  43. Kavitha D, Balachandran M (2019) XLPE—layered silicate nanocomposites for high voltage insulation applications: dielectric characteristics, treeing behaviour and mechanical properties. IET Sci Meas Technol 13:1019–1025

    Article  Google Scholar 

  44. Promvichai N, Boonraksa T, Marungsri B (2018) The effect of pH and temperature on the propagation of water treeing in XLPE insulated underground cable. ECTI Trans Electric Eng Electron Comm 16:83–89

    Article  Google Scholar 

  45. Radu I, Notingher PV, Filippini JC (2000) Influence of water trees on the electric field distribution and breakdown in the point–point geometry. J Electrostat 48(3):165–178

    Article  CAS  Google Scholar 

  46. Radu I, Notingher PV, Filippini JC (2000) The effect of water treeing on the electric field distribution of XLPE. Consequences for the dielectric strength. IEEE T Dielect El In. 7:860–868

    Article  CAS  Google Scholar 

  47. Elayyan HSBA, Abderrazzaq MH (2005) Electric field computation in wet cable insulation using finite element approach. IEEE T Dielect El In 12:1125–1133

    Article  Google Scholar 

  48. Meyer CT, Filippini JC (1979) Water-treeing seen as an environmental stress cracking phenomenon of electric origin. Polymer 20:1186–1187

    Article  CAS  Google Scholar 

  49. Faezah HN, Azreen MAM, Lau KY et al (2019) Breakdown properties of aged low voltage cross-linked polyethylene insulated cable. I IOP Conf Ser Mater Sci Eng 513:012014

    Article  CAS  Google Scholar 

  50. Li J, Zhao X, Yin G et al (2011) The effect of accelerated water tree ageing on the properties of XLPE cable insulation. IEEE T Dielect El In 18:1562–1569

    Article  CAS  Google Scholar 

  51. Maeno Y, Hirai N, Ohki Y et al (2005) Effects of crosslinking byproducts on space charge formation in crosslinked polyethylene. IEEE T Dielect El In 12:90–97

    Article  CAS  Google Scholar 

  52. Hirai N, Minami R, Tanaka T et al (2003) Chemical group in crosslinking byproducts responsi-ble for charge trapping in polyethylene. IEEE Trans Dielect Elect Insul 10:320–330

    Article  CAS  Google Scholar 

  53. Sekii Y (2019) Charge generation and electrical degradation of cross-linked polyethylene. IEEJ T Electr Electr 14:4–15

    Article  CAS  Google Scholar 

  54. Ebewele RO (2000) Polymer science and technology. CRC Press, New York

    Book  Google Scholar 

  55. Gugumus F (2002) Re-examination of the thermal oxidation reactions of polymers 2. Thermal oxidation of polyethylene. Polym Degrad Stabil 76:329–340

    Article  CAS  Google Scholar 

  56. Garton A, Bamji SS, Bulinski A et al (1986) Oxidation and water treeing in XLPE cable insulation. In: Proceedings of the 3rd international conference on conduction and breakdown in solid dielectrics, rondheim, Norway, 3–6 July 1989

    Google Scholar 

  57. Gamez-Garcia M, Bartnikas R, Wertheimer MR (1987) Synthesis reactions involving XLPE subjected to partial discharges. IEEE T Dielect El In EI-22:199–205

    Google Scholar 

  58. Bernstein BS (1989) Service life of cross-linked polyethylene as high voltage cable insulation. Polymer Eng Sci 29:13–18

    Article  CAS  Google Scholar 

  59. Struik LCE (1978) Physical ageing in amorphous polymers and other materials. Elsevier Press, Amesterdam

    Google Scholar 

  60. Boukezzi L, Boubakeur A, Lallouani M (2007) Presented at IEEE international conference on electrical insulation and dielectric phenomena (CEIDP) (Canada, 2007), p 65

    Google Scholar 

  61. Boukezzi L, Boubakeur A (2018) Effect of thermal aging on the electrical characteristics of XLPE for HV cables. Trans electr electron mater 19:344–351

    Article  Google Scholar 

  62. Bulinski A, Bamji S, Densley J (1982) The effects of moisture content, frequency and temperature on the life of miniature XLPE cables. Presented at the 1982 IEEE international conference on electrical insulation, Philadelphia, PA, USA, 7–9 June 1982

    Google Scholar 

  63. Mecheri Y, Bouazabia S, Boubakeur A et al (2013) Effect of thermal ageing on the properties of XLPE as insulating material for HV cables. In: International conference on electrical Insula-tion, IET Centre, Birmingham, UK

    Google Scholar 

  64. Li W, Shi Q, Xiao W (2015) Investigation on thermal aging of HVDC XLPE. In: Proceedings of 5th international conference on advanced design and manufacturing engineering, advances in engineering research, Atlantis Press, pp 428–432

    Google Scholar 

  65. Zhang F, Xie C, Wang T et al (2019) Study on XLPE temperature-frequency aging based on combined analysis of laser induced breakdown spectroscopy and gas chromatography study on XLPE temperature-frequency aging based on combined analysis of laser induced breakdown spectroscopy and gas chromatography. IOP Conf Ser Mater Sci Eng 493:012003

    Article  CAS  Google Scholar 

  66. Ciuprina F, Teissèdre G, Filippini JC (2001) Polyethylene crosslinking and water treeing. Polymer 42:7841–7846

    Article  CAS  Google Scholar 

  67. Geng P, Song J, Tian M et al (2018) Influence of thermal aging on AC leakage current in XLPE insulation. AIP Adv 8:025115

    Article  CAS  Google Scholar 

  68. Sugimoto M, Shimada A, Kudoh H et al (2013) Product analysis for polyethylene degradation by radiation and thermal ageing. Radiat Phys Chem 82:69–73

    Article  CAS  Google Scholar 

  69. Kuriyama I, Hayakawa N, Nakase Y et al (1979) Effect of dose rate on degradation behavior of insulating polymer miaterials. IEEE T Dielect El In EI-14:272–277

    Google Scholar 

  70. Matsui T, Takano T, Takayama S et al (2002) Degradation of crosslinked polyethylene in water by gamma-irradiation. Radiat Phys Chem 63:193–200

    Article  CAS  Google Scholar 

  71. Seguchi T, Tamura K, Shimada A et al (2012) Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing. Radiat Phys Chem 81:1747–1751

    Article  CAS  Google Scholar 

  72. Burnay SG (2018) Degradation of polymeric components in nuclear power applications. educational material for engineers. In: Energiforsk. Available via DIALOG. https://energiforsk.se/en/programme/polymeric-materials-in-nuclear-applications/reports/degradation-of-polymeric-components-in-nuclear-power-applications/. Accessed 20 Mar 2020

  73. Burnay SG, Dawson J (2001) Reverse temperature effect during radiation ageing of XLPE cable insulation. In: Mallinson LG (ed) Ageing studies and lifetime extension of materials. Springer, Boston, MA

    Google Scholar 

  74. Liu S, Veysey SW, Fifield LS et al (2018) Quantitative analysis of changes in antioxidant in crosslinked polyethylene (XLPE) cable insulation material exposed to heat and gamma radiation. Polym Degrad Stabil 156:252–258

    Article  CAS  Google Scholar 

  75. Hedir A, Moudoud M (2016) Effect of ultraviolet radiations on medium and high voltage cables insulation. Int J Eng Technol 8:2308–2317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meera Balachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balachandran, M. (2021). Aging and Degradation Studies in Crosslinked Polyethylene (XLPE). In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0514-7_8

Download citation

Publish with us

Policies and ethics